dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:11:30Z |
|
dc.date.available |
2014-03-01T02:11:30Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03733114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29924 |
|
dc.subject |
Critical point theory |
en |
dc.subject |
Morse theory |
en |
dc.subject |
Multiple solutions |
en |
dc.subject |
Regularity theory |
en |
dc.subject |
Resonance at zero and infinity |
en |
dc.subject |
Solutions of constant sign |
en |
dc.subject |
Truncation techniques |
en |
dc.title |
Neumann problems resonant at zero and infinity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10231-011-0188-z |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10231-011-0188-z |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a semilinear Neumann problem with a reaction which is resonant at both zero and ±∞. Using a combination of methods from critical point theory, together with truncation techniques, the use of upper-lower solutions and of the Morse theory (critical groups), we show that the problem has at least five nontrivial smooth solutions, four of which have constant sign (two positive and two negative). © 2011 The Author(s). |
en |
heal.journalName |
Annali di Matematica Pura ed Applicata |
en |
dc.identifier.doi |
10.1007/s10231-011-0188-z |
en |
dc.identifier.volume |
191 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
395 |
en |
dc.identifier.epage |
430 |
en |