dc.contributor.author | O'Regan, D | en |
dc.contributor.author | Papageorgiou, NS | en |
dc.contributor.author | Smyrlis, G | en |
dc.date.accessioned | 2014-03-01T02:11:30Z | |
dc.date.available | 2014-03-01T02:11:30Z | |
dc.date.issued | 2012 | en |
dc.identifier.issn | 12303429 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/29925 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-84857851383&partnerID=40&md5=e2c9bd7d0bdf676744210c634a332819 | en |
dc.subject | C-condition | en |
dc.subject | Critical groups | en |
dc.subject | Double resonance | en |
dc.subject | Homotopy invariance | en |
dc.subject | Morse theory | en |
dc.subject | Unique continuation property | en |
dc.title | Neumann problems with double resonance | en |
heal.type | journalArticle | en |
heal.publicationDate | 2012 | en |
heal.abstract | We study elliptic Neumann problems in which the reaction term at infinity is resonant with respect to any pair {λ̂m, λ̂m+1} of distinct consecutive eigenvalues. Using variational methods combined with Morse theoretic techniques, we show that when the double resonance occurs in a ""nonprincipal"" spectral interval [λ̂m, λ̂m+1], m ≥ 1, we have at least three nontrivial smooth solutions, two of which have constant sign. If the double resonance occurs in the ""principal"" spectral [λ̂0 = 0, λ̂1], then we show that the problem has at least one nontrivial smooth solution. © 2012 Juliusz Schauder University Centre for Nonlinear Studies. | en |
heal.journalName | Topological Methods in Nonlinear Analysis | en |
dc.identifier.volume | 39 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 151 | en |
dc.identifier.epage | 173 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |