dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:11:32Z |
|
dc.date.available |
2014-03-01T02:11:32Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
14240637 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29935 |
|
dc.title |
Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00023-011-0129-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00023-011-0129-9 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider nonlinear elliptic Dirichlet problems with a singular term, a concave (i. e., (p - 1)-sublinear) term and a Carathéodory perturbation. We study the cases where the Carathéodory perturbation is (p - 1)-linear and (p - 1)-superlinear near +∞. Using variational techniques based on the critical point theory together with truncation arguments and the method of upper and lower solutions, we show that if the L∞-coefficient of the concave term is small enough, the problem has at least two nontrivial smooth solutions. © 2011 The Author(s). |
en |
heal.journalName |
Annales Henri Poincare |
en |
dc.identifier.doi |
10.1007/s00023-011-0129-9 |
en |
dc.identifier.volume |
13 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
481 |
en |
dc.identifier.epage |
512 |
en |