HEAL DSpace

On solving the master equation in spatially periodic systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kolokathis, PD en
dc.contributor.author Theodorou, DN en
dc.date.accessioned 2014-03-01T02:11:49Z
dc.date.available 2014-03-01T02:11:49Z
dc.date.issued 2012 en
dc.identifier.issn 00219606 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29948
dc.subject.other Alternative methods en
dc.subject.other Atomic levels en
dc.subject.other Computational requirements en
dc.subject.other Computational savings en
dc.subject.other Constant matrix en
dc.subject.other Diagonalizations en
dc.subject.other Diffusion tensor en
dc.subject.other Direct molecular dynamics en
dc.subject.other Dynamical phenomena en
dc.subject.other Eigenvalues and eigenvectors en
dc.subject.other Euler method en
dc.subject.other Kinetic monte carlo simulation en
dc.subject.other Kmc simulations en
dc.subject.other Low temperatures en
dc.subject.other Master equations en
dc.subject.other Numerical solution en
dc.subject.other Periodic boundary conditions en
dc.subject.other Recursive scheme en
dc.subject.other Reduction of dimensionality en
dc.subject.other Silicalite-1 en
dc.subject.other Spatially periodic systems en
dc.subject.other Time-dependent en
dc.subject.other Transition state en
dc.subject.other Unit cells en
dc.subject.other Computational chemistry en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Molecular dynamics en
dc.subject.other Silicate minerals en
dc.subject.other Xenon en
dc.subject.other Rate constants en
dc.title On solving the master equation in spatially periodic systems en
heal.type journalArticle en
heal.identifier.primary 10.1063/1.4733291 en
heal.identifier.secondary http://dx.doi.org/10.1063/1.4733291 en
heal.identifier.secondary 034112 en
heal.publicationDate 2012 en
heal.abstract We present a new method for solving the master equation for a system evolving on a spatially periodic network of states. The network contains 2ν images of a unit cell of n states, arranged along one direction with periodic boundary conditions at the ends. We analyze the structure of the symmetrized (2νn) × (2νn) rate constant matrix for this system and derive a recursive scheme for determining its eigenvalues and eigenvectors, and therefore analytically expressing the time-dependent probabilities of all states in the network, based on diagonalizations of n × n matrices formed by consideration of a single unit cell. We apply our new method to the problem of low-temperature, low-occupancy diffusion of xenon in the zeolite silicalite-1 using the states, interstate transitions, and transition state theory-based rate constants previously derived by June J. Phys. Chem. 95, 8866 (1991). The new method yields a diffusion tensor for this system which differs by less than 3 from the values derived previously via kinetic Monte Carlo (KMC) simulations and confirmed by new KMC simulations conducted in the present work. The computational requirements of the new method are compared against those of KMC, numerical solution of the master equation by the Euler method, and direct molecular dynamics. In the problem of diffusion of xenon in silicalite-1, the new method is shown to be faster than these alternative methods by factors of about 3.177 × 104, 4.237 × 103, and 1.75 × 107, respectively. The computational savings and ease of setting up calculations afforded by the new method of master equation solution by recursive reduction of dimensionality in diagonalizing the rate constant matrix make it attractive as a means of predicting long-time dynamical phenomena in spatially periodic systems from atomic-level information. © 2012 American Institute of Physics. en
heal.journalName Journal of Chemical Physics en
dc.identifier.doi 10.1063/1.4733291 en
dc.identifier.volume 137 en
dc.identifier.issue 3 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής