HEAL DSpace

Optical modulation techniques applied in the analysis of chalcopyrite semiconductor heterostructures

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Anestou, K en
dc.contributor.author Papadimitriou, D en
dc.date.accessioned 2014-03-01T02:11:50Z
dc.date.available 2014-03-01T02:11:50Z
dc.date.issued 2012 en
dc.identifier.issn 00223727 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29959
dc.subject.other Band energy en
dc.subject.other Biaxial strains en
dc.subject.other Chalcopyrite layers en
dc.subject.other Chalcopyrite semiconductor en
dc.subject.other Device technologies en
dc.subject.other Effective strain en
dc.subject.other Elastic strain en
dc.subject.other Elasticity theory en
dc.subject.other Energy shift en
dc.subject.other Epitaxially grown en
dc.subject.other Hydrostatic strain en
dc.subject.other Low temperatures en
dc.subject.other Monocrystalline en
dc.subject.other Optical modulation technique en
dc.subject.other Partial anions en
dc.subject.other Photoreflectance spectroscopy en
dc.subject.other Quaternary alloys en
dc.subject.other Semiconductor heterostructures en
dc.subject.other Thermal strain en
dc.subject.other Thick layers en
dc.subject.other Elasticity en
dc.subject.other Epitaxial growth en
dc.subject.other Frequency modulation en
dc.subject.other Gallium en
dc.subject.other Gallium alloys en
dc.subject.other Heterojunctions en
dc.subject.other Interfaces (materials) en
dc.subject.other Light modulation en
dc.subject.other Solar absorbers en
dc.subject.other Copper compounds en
dc.title Optical modulation techniques applied in the analysis of chalcopyrite semiconductor heterostructures en
heal.type journalArticle en
heal.identifier.primary 10.1088/0022-3727/45/21/215305 en
heal.identifier.secondary http://dx.doi.org/10.1088/0022-3727/45/21/215305 en
heal.identifier.secondary 215305 en
heal.publicationDate 2012 en
heal.abstract The structural properties of chalcopyrite single crystals and monocrystalline epitaxial layers of ternary (CuGaSe2, CuInSe2, CuGaS2, CuInS2) and quaternary (CuIn1xGaxSe2) chalcopyrite absorbers with applications in solar-cell device technology are analysed by optical modulation techniques. Photoreflectance (PR) Spectroscopy is applied at room and low temperatures to quantify elastic strain effects. With respect to bulk chalcopyrites, epitaxially grown layers exhibit band energy shifts due to mismatch and thermal strain evolving in semiconductor heterostructures. In the uppermost 100nm of the 500nm thick layers, the magnitude of the respective stress measures 100MPa, at 300K, and 400MPa, at 20K, and is reduced by up to 50% compared with the stress at the chalcopyrite/GaAs-substrate interface. The overall strain calculated from the energy shift of the PR spectra is compared with the strain calculated in terms of elasticity theory. The coexistence of biaxial and hydrostatic strain due to partial anion/cation substitution in ternary to form quaternary chalcopyrite layers is also discussed. Based on the evaluation of effective strain as a result of both hydrostatic and biaxial strain in quaternary chalcopyrite layers CuIn1xGaxSe2 and the evaluation of the PR spectra of the layers, the band energies of the respective non-strained quaternary alloy with x=0.19 are determined to be Ea=1.09eV and Eb=1.22eV. © 2012 IOP Publishing Ltd. en
heal.journalName Journal of Physics D: Applied Physics en
dc.identifier.doi 10.1088/0022-3727/45/21/215305 en
dc.identifier.volume 45 en
dc.identifier.issue 21 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record