dc.contributor.author |
Papayannis, A |
en |
dc.contributor.author |
Mamouri, RE |
en |
dc.contributor.author |
Amiridis, V |
en |
dc.contributor.author |
Giannakaki, E |
en |
dc.contributor.author |
Veselovskii, I |
en |
dc.contributor.author |
Kokkalis, P |
en |
dc.contributor.author |
Tsaknakis, G |
en |
dc.contributor.author |
Balis, D |
en |
dc.contributor.author |
Kristiansen, NI |
en |
dc.contributor.author |
Stohl, A |
en |
dc.contributor.author |
Korenskiy, M |
en |
dc.contributor.author |
Allakhverdiev, K |
en |
dc.contributor.author |
Huseyinoglu, MF |
en |
dc.contributor.author |
Baykara, T |
en |
dc.date.accessioned |
2014-03-01T02:11:50Z |
|
dc.date.available |
2014-03-01T02:11:50Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
13522310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29960 |
|
dc.subject |
BSC-DREAM8b |
en |
dc.subject |
EARLINET |
en |
dc.subject |
Eyjafjallajökull |
en |
dc.subject |
FLEXPART |
en |
dc.subject |
HYSPLIT |
en |
dc.subject |
Optical properties of volcanic ash |
en |
dc.subject |
Raman lidar |
en |
dc.subject.other |
BSC-DREAM8b |
en |
dc.subject.other |
EARLINET |
en |
dc.subject.other |
FLEXPART |
en |
dc.subject.other |
HYSPLIT |
en |
dc.subject.other |
Raman LIDAR |
en |
dc.subject.other |
Atmospheric aerosols |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dust |
en |
dc.subject.other |
Optical radar |
en |
dc.subject.other |
Volcanoes |
en |
dc.subject.other |
Optical properties |
en |
dc.subject.other |
dust |
en |
dc.subject.other |
geometry |
en |
dc.subject.other |
lidar |
en |
dc.subject.other |
measurement method |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
optical depth |
en |
dc.subject.other |
optical property |
en |
dc.subject.other |
Raman spectroscopy |
en |
dc.subject.other |
volcanic ash |
en |
dc.subject.other |
volcanic eruption |
en |
dc.subject.other |
aerosol |
en |
dc.subject.other |
article |
en |
dc.subject.other |
depolarization |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
mineral dust |
en |
dc.subject.other |
optical depth |
en |
dc.subject.other |
particle size |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
remote sensing |
en |
dc.subject.other |
Turkey (republic) |
en |
dc.subject.other |
volcanic ash |
en |
dc.subject.other |
volcano |
en |
dc.subject.other |
Eyjafjallajokull |
en |
dc.subject.other |
Greece |
en |
dc.subject.other |
Iceland |
en |
dc.subject.other |
Turkey |
en |
dc.subject.other |
Thessaloniki |
en |
dc.title |
Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.atmosenv.2011.08.037 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.atmosenv.2011.08.037 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The vertical extension and the optical properties of aged ash layers advected from the Eyjafjallajökull volcanic eruption over the Eastern Mediterranean (Greece and Turkey) are presented for the period May 10-21, 2010. Raman lidar observations performed at three stations of EARLINET (Athens, Thessaloniki and Istanbul), provided clear ash signatures within certain layers, although ash was sometimes mixed with mineral dust advected from the Saharan region. AERONET columnar measurements did not indicate the presence of ash over the area for that period, although they did for the dust particles. This was further investigated and confirmed by simulations of the ash trajectories by the FLEXPART model and the BSC-DREAM8b dust model. Good agreement was found between simulated and observed geometrical characteristics of the ash and dust layers, respectively. Ash particles were observed over the lidar stations after 6-7-days transport from the volcanic source at height ranges between approximately 1.5 and 6km. Mean ash particle layer thickness ranged between 1.5 and 2.5km and the corresponding aerosol optical depth (AOD) was of the order of 0.12-0.06 at 355nm and of 0.04-0.05 at 532nm. Inside the ash layers, the lidar ratios (LR) ranged between 55 and 67sr at 355nm and 76-89sr at 532nm, while the particle linear depolarization ratio ranged between 10 and 25%. © 2011 Elsevier Ltd. |
en |
heal.journalName |
Atmospheric Environment |
en |
dc.identifier.doi |
10.1016/j.atmosenv.2011.08.037 |
en |
dc.identifier.volume |
48 |
en |
dc.identifier.spage |
56 |
en |
dc.identifier.epage |
65 |
en |