dc.contributor.author |
Roupas, Z |
en |
dc.date.accessioned |
2014-03-01T02:11:57Z |
|
dc.date.available |
2014-03-01T02:11:57Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
17518113 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29979 |
|
dc.title |
Phase space geometry and chaotic attractors in dissipative Nambu mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1751-8113/45/19/195101 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1751-8113/45/19/195101 |
en |
heal.identifier.secondary |
195101 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
Following the Nambu mechanics framework, we demonstrate that the nondissipative part of the Lorenz system can be generated by the intersection of two quadratic surfaces that form a doublet under the group SL(2,ℝ). All manifolds are classified into four distinct classes: parabolic, elliptical, cylindrical and hyperbolic. The Lorenz attractor is localized by a specific infinite set of oneparameter family of these surfaces. The different classes correspond to different physical systems. The Lorenz system is identified as a charged rigid body in a uniform magnetic field with external torque and this system is generalized to give new strange attractors. © 2012 IOP Publishing Ltd. |
en |
heal.journalName |
Journal of Physics A: Mathematical and Theoretical |
en |
dc.identifier.doi |
10.1088/1751-8113/45/19/195101 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
19 |
en |