HEAL DSpace

Phase space geometry and chaotic attractors in dissipative Nambu mechanics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Roupas, Z en
dc.date.accessioned 2014-03-01T02:11:57Z
dc.date.available 2014-03-01T02:11:57Z
dc.date.issued 2012 en
dc.identifier.issn 17518113 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/29979
dc.title Phase space geometry and chaotic attractors in dissipative Nambu mechanics en
heal.type journalArticle en
heal.identifier.primary 10.1088/1751-8113/45/19/195101 en
heal.identifier.secondary http://dx.doi.org/10.1088/1751-8113/45/19/195101 en
heal.identifier.secondary 195101 en
heal.publicationDate 2012 en
heal.abstract Following the Nambu mechanics framework, we demonstrate that the nondissipative part of the Lorenz system can be generated by the intersection of two quadratic surfaces that form a doublet under the group SL(2,ℝ). All manifolds are classified into four distinct classes: parabolic, elliptical, cylindrical and hyperbolic. The Lorenz attractor is localized by a specific infinite set of oneparameter family of these surfaces. The different classes correspond to different physical systems. The Lorenz system is identified as a charged rigid body in a uniform magnetic field with external torque and this system is generalized to give new strange attractors. © 2012 IOP Publishing Ltd. en
heal.journalName Journal of Physics A: Mathematical and Theoretical en
dc.identifier.doi 10.1088/1751-8113/45/19/195101 en
dc.identifier.volume 45 en
dc.identifier.issue 19 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής