dc.contributor.author | Gasinski, L | en |
dc.contributor.author | Papageorgiou, NS | en |
dc.date.accessioned | 2014-03-01T02:12:02Z | |
dc.date.available | 2014-03-01T02:12:02Z | |
dc.date.issued | 2012 | en |
dc.identifier.issn | 10562176 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/29988 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-84863433016&partnerID=40&md5=abcd90964f826b0b067b2b73bd34eda2 | en |
dc.title | Positive solutions for nonlinear neumann eigenvalue problems | en |
heal.type | journalArticle | en |
heal.publicationDate | 2012 | en |
heal.abstract | We consider a parametric nonlinear Neumann problem driven by the p-Laplacian plus an Linfin;-potential. We study the dependence of positive solutions on the parameter λ > 0, when the reaction term has a superdiffusive kind of behaviour. We prove a bifurcation type theorem, showing the existence of a critical parameter value λ> 0, such that for λ > λ, the problem has at least two positive solutions, for λ = λthe problem has at least one positive solution and finally for λ ∈ (0, λ), no positive solution exists. ©Dynamic Publishers, Inc. | en |
heal.journalName | Dynamic Systems and Applications | en |
dc.identifier.volume | 21 | en |
dc.identifier.issue | 2-3 | en |
dc.identifier.spage | 235 | en |
dc.identifier.epage | 250 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |