dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Smyrlis, G |
en |
dc.date.accessioned |
2014-03-01T02:12:02Z |
|
dc.date.available |
2014-03-01T02:12:02Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
13851292 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/29989 |
|
dc.subject |
Bifurcation type theorem |
en |
dc.subject |
C-condition |
en |
dc.subject |
Local minimizers |
en |
dc.subject |
Nonlinear maximum principle |
en |
dc.subject |
p-Laplacian |
en |
dc.title |
Positive solutions for nonlinear Neumann problems with concave and convex terms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11117-011-0124-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11117-011-0124-x |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
We consider a nonlinear elliptic Neumann problem driven by the p-Laplacian with a reaction that involves the combined effects of a ""concave"" and of a ""convex"" terms. The convex term (p-superlinear term) need not satisfy the Ambrosetti-Rabinowitz condition. Employing variational methods based on the critical point theory together with truncation techniques, we prove a bifurcation type theorem for the equation. © 2011 Springer Basel AG. |
en |
heal.journalName |
Positivity |
en |
dc.identifier.doi |
10.1007/s11117-011-0124-x |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
271 |
en |
dc.identifier.epage |
296 |
en |