dc.contributor.author |
Lombardo, F |
en |
dc.contributor.author |
Volpi, E |
en |
dc.contributor.author |
Koutsoyiannis, D |
en |
dc.date.accessioned |
2014-03-01T02:12:04Z |
|
dc.date.available |
2014-03-01T02:12:04Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
02626667 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30005 |
|
dc.subject |
discrete random cascades |
en |
dc.subject |
ensemble statistical behaviour |
en |
dc.subject |
Hurst-Kolmogorov process |
en |
dc.subject |
multifractals |
en |
dc.subject |
rainfall downscaling |
en |
dc.subject |
stationarity |
en |
dc.subject.other |
ensemble statistical behaviour |
en |
dc.subject.other |
Hurst-Kolmogorov process |
en |
dc.subject.other |
Multifractals |
en |
dc.subject.other |
Rainfall downscaling |
en |
dc.subject.other |
Random cascades |
en |
dc.subject.other |
Stationarity |
en |
dc.subject.other |
Fractals |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Time series |
en |
dc.subject.other |
Rain |
en |
dc.subject.other |
comparative study |
en |
dc.subject.other |
downscaling |
en |
dc.subject.other |
empirical analysis |
en |
dc.subject.other |
Monte Carlo analysis |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
precipitation assessment |
en |
dc.subject.other |
rainfall |
en |
dc.subject.other |
stochasticity |
en |
dc.subject.other |
theoretical study |
en |
dc.subject.other |
time series |
en |
dc.title |
Rainfall downscaling in time: Theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades [Descente d'échelle temporelle des précipitations: Comparaison théorique et empirique entre multifractales et cascades aléatoires discrètes de Hurst-Kolmogorov] |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/02626667.2012.695872 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/02626667.2012.695872 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
During recent decades, intensive research has focused on techniques capable of generating rainfall time series at a fine time scale that are (fully or partially) consistent with a given series at a coarser time scale. Here we theoretically investigate the consequences on the ensemble statistical behaviour caused by the structure of a simple and widely-used approach of stochastic downscaling for rainfall time series, the discrete Multiplicative Random Cascade. We show that synthetic rainfall time series generated by these cascade models correspond to a stochastic process which is non-stationary, because its temporal autocorrelation structure depends on the position in time in an undesirable manner. Then, we propose and theoretically analyse an alternative downscaling approach based on the Hurst-Kolmogorov process, which is equally simple but is stationary. Finally, we provide Monte Carlo experiments which validate our theoretical results. © 2012 Copyright 2012 IAHS Press. |
en |
heal.journalName |
Hydrological Sciences Journal |
en |
dc.identifier.doi |
10.1080/02626667.2012.695872 |
en |
dc.identifier.volume |
57 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1052 |
en |
dc.identifier.epage |
1066 |
en |