dc.contributor.author |
Papanicolaou, VG |
en |
dc.contributor.author |
Papageorgiou, EG |
en |
dc.contributor.author |
Lepipas, DC |
en |
dc.date.accessioned |
2014-03-01T02:12:05Z |
|
dc.date.available |
2014-03-01T02:12:05Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
13875841 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30006 |
|
dc.subject |
Arc-sine law |
en |
dc.subject |
Brownian motion |
en |
dc.subject |
Exit probabilities |
en |
dc.subject |
Exit times |
en |
dc.subject |
Kirchhoff condition |
en |
dc.subject |
Occupation times |
en |
dc.title |
Random Motion on Simple Graphs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11009-010-9203-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11009-010-9203-x |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
Consider a stochastic process that lives on n-semiaxes joined at the origin. On each ray it behaves as one dimensional Brownian Motion and at the origin it chooses a ray uniformly at random (Kirchhoff condition). The principal results are the computation of the exit probabilities and certain other probabilistic quantities regarding exit and occupation times. © 2010 Springer Science+Business Media, LLC. |
en |
heal.journalName |
Methodology and Computing in Applied Probability |
en |
dc.identifier.doi |
10.1007/s11009-010-9203-x |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
285 |
en |
dc.identifier.epage |
297 |
en |