HEAL DSpace

Robust design in aerodynamics using third-order sensitivity analysis based on discrete adjoint. Application to quasi-1D flows

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papoutsis-Kiachagias, EM en
dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T02:12:08Z
dc.date.available 2014-03-01T02:12:08Z
dc.date.issued 2012 en
dc.identifier.issn 02712091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30013
dc.subject Discreteadjoint method en
dc.subject Method of moments en
dc.subject Robust aerodynamic shape optimization en
dc.subject Third-order sensitivity derivatives en
dc.subject.other 3D flow en
dc.subject.other Adjoint variable methods en
dc.subject.other Adjoints en
dc.subject.other Aerodynamic shape optimization en
dc.subject.other Control point en
dc.subject.other Design variables en
dc.subject.other Direct differentiation en
dc.subject.other Discreteadjoint method en
dc.subject.other Duct shape en
dc.subject.other Engineering design problems en
dc.subject.other Environmental parameter en
dc.subject.other First-order en
dc.subject.other Flow model en
dc.subject.other Friction coefficients en
dc.subject.other Gradient-based method en
dc.subject.other Mixed derivatives en
dc.subject.other Objective functions en
dc.subject.other Parameterizing en
dc.subject.other Robust designs en
dc.subject.other Second moments en
dc.subject.other Second orders en
dc.subject.other Second-order sensitivity en
dc.subject.other Sensitivity derivatives en
dc.subject.other Steepest descent algorithm en
dc.subject.other Third-order en
dc.subject.other Beam propagation method en
dc.subject.other Design en
dc.subject.other Mach number en
dc.subject.other Method of moments en
dc.subject.other Sensitivity analysis en
dc.subject.other Aerodynamics en
dc.title Robust design in aerodynamics using third-order sensitivity analysis based on discrete adjoint. Application to quasi-1D flows en
heal.type journalArticle en
heal.identifier.primary 10.1002/fld.2604 en
heal.identifier.secondary http://dx.doi.org/10.1002/fld.2604 en
heal.publicationDate 2012 en
heal.abstract In this paper, the second-order second moment approach, coupled with an adjoint-based steepest descent algorithm, for the solution of the so-called robust design problem in aerodynamics is proposed. Because the objective function for the robust design problem comprises first-order and second-order sensitivity derivatives with respect to the environmental parameters, the application of a gradient-based method , which requires the sensitivities of this function with respect to the design variables, calls for the computation of third-order mixed derivatives. To compute these derivatives with the minimum CPU cost, a combination of the direct differentiation and the discrete adjoint variable method is proposed. This is presented for the first time in the relevant literature and is the most efficient among other possible schemes on condition that the design variables are much more than the environmental ones; this is definitely true in most engineering design problems. The proposed approach was used for the robust design of a duct, assuming a quasi-1D flow model; the coordinates of the Bézier control points parameterizing the duct shape are used as design variables, whereas the outlet Mach number and the Darcy-Weisbach friction coefficient are used as environmental ones. The extension to 2D and 3D flow problems, after developing the corresponding direct differentiation and adjoint variable methods and software, is straightforward. © 2011 John Wiley & Sons, Ltd.. en
heal.journalName International Journal for Numerical Methods in Fluids en
dc.identifier.doi 10.1002/fld.2604 en
dc.identifier.volume 69 en
dc.identifier.issue 3 en
dc.identifier.spage 691 en
dc.identifier.epage 709 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής