dc.contributor.author |
Ebadian, A |
en |
dc.contributor.author |
Nikoufar, I |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.contributor.author |
Ghobadipour, N |
en |
dc.date.accessioned |
2014-03-01T02:14:40Z |
|
dc.date.available |
2014-03-01T02:14:40Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
02529602 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30079 |
|
dc.subject |
Fixed point |
en |
dc.subject |
Generalized derivation |
en |
dc.subject |
Hilbert C*-module |
en |
dc.subject |
Hyers-Ulam-Rassias stability |
en |
dc.title |
Stability of generalized derivations on hilbert c*-modules associated with a pexiderized cauchy-jensen type functional equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0252-9602(12)60094-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0252-9602(12)60094-0 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
In this article, we introduce the notion of generalized derivations on Hilbert C*-modules. We use a fixed-point method to prove the generalized Hyers-Ulam-Rassias stability associated to the Pexiderized Cauchy-Jensen type functional equation. rf(x+yr)+sg(x-ys)=2h(x)for r, s ∈ R\{0} on Hilbert C*-modules, where . f, g, and . h are mappings from a Hilbert C*-module M to M. © 2012 Wuhan Institute of Physics and Mathematics. |
en |
heal.journalName |
Acta Mathematica Scientia |
en |
dc.identifier.doi |
10.1016/S0252-9602(12)60094-0 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
1226 |
en |
dc.identifier.epage |
1238 |
en |