dc.contributor.author |
Chatjigeorgiou, IK |
en |
dc.contributor.author |
Mavrakos, SA |
en |
dc.date.accessioned |
2014-03-01T02:14:47Z |
|
dc.date.available |
2014-03-01T02:14:47Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00220833 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30119 |
|
dc.subject |
Addition theorems |
en |
dc.subject |
Boundary value problem |
en |
dc.subject |
Elliptical cylinders |
en |
dc.subject |
Inhomogeneous Helmholtz equation |
en |
dc.subject.other |
Addition theorem |
en |
dc.subject.other |
Analytic solution |
en |
dc.subject.other |
Boundary values |
en |
dc.subject.other |
Closed form solutions |
en |
dc.subject.other |
Closed-form formulae |
en |
dc.subject.other |
Diffraction problem |
en |
dc.subject.other |
Elliptic coordinates |
en |
dc.subject.other |
Elliptical cylinder |
en |
dc.subject.other |
Green's theorem |
en |
dc.subject.other |
Incident waves |
en |
dc.subject.other |
Inhomogeneous Helmholtz equations |
en |
dc.subject.other |
Mathematical analysis |
en |
dc.subject.other |
Polar coordinate |
en |
dc.subject.other |
Second orders |
en |
dc.subject.other |
Velocity potentials |
en |
dc.subject.other |
Wave components |
en |
dc.subject.other |
Cylinders (shapes) |
en |
dc.subject.other |
Diffraction |
en |
dc.subject.other |
Helmholtz equation |
en |
dc.subject.other |
Green's function |
en |
dc.title |
The analytic form of Green's function in elliptic coordinates |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10665-011-9464-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10665-011-9464-6 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
The purpose of this study is the derivation of a closed-form formula for Green's function in elliptic coordinates that could be used for achieving an analytic solution for the second-order diffraction problem by elliptical cylinders subjected to monochromatic incident waves. In fact, Green's function represents the solution of the so-called locked wave component of the second-order velocity potential. The mathematical analysis starts with a proper analytic formulation of the second-order diffraction potential that results in the inhomogeneous Helmholtz equation. The associated boundary-value problem is treated by applying Green's theorem to obtain a closed-form solution for Green's function. Green's function is initially expressed in polar coordinates while its final elliptic form is produced through the proper employment of addition theorems. © 2011 Springer Science+Business Media B.V. |
en |
heal.journalName |
Journal of Engineering Mathematics |
en |
dc.identifier.doi |
10.1007/s10665-011-9464-6 |
en |
dc.identifier.volume |
72 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
87 |
en |
dc.identifier.epage |
105 |
en |