HEAL DSpace

The analytic form of Green's function in elliptic coordinates

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatjigeorgiou, IK en
dc.contributor.author Mavrakos, SA en
dc.date.accessioned 2014-03-01T02:14:47Z
dc.date.available 2014-03-01T02:14:47Z
dc.date.issued 2012 en
dc.identifier.issn 00220833 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30119
dc.subject Addition theorems en
dc.subject Boundary value problem en
dc.subject Elliptical cylinders en
dc.subject Inhomogeneous Helmholtz equation en
dc.subject.other Addition theorem en
dc.subject.other Analytic solution en
dc.subject.other Boundary values en
dc.subject.other Closed form solutions en
dc.subject.other Closed-form formulae en
dc.subject.other Diffraction problem en
dc.subject.other Elliptic coordinates en
dc.subject.other Elliptical cylinder en
dc.subject.other Green's theorem en
dc.subject.other Incident waves en
dc.subject.other Inhomogeneous Helmholtz equations en
dc.subject.other Mathematical analysis en
dc.subject.other Polar coordinate en
dc.subject.other Second orders en
dc.subject.other Velocity potentials en
dc.subject.other Wave components en
dc.subject.other Cylinders (shapes) en
dc.subject.other Diffraction en
dc.subject.other Helmholtz equation en
dc.subject.other Green's function en
dc.title The analytic form of Green's function in elliptic coordinates en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10665-011-9464-6 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10665-011-9464-6 en
heal.publicationDate 2012 en
heal.abstract The purpose of this study is the derivation of a closed-form formula for Green's function in elliptic coordinates that could be used for achieving an analytic solution for the second-order diffraction problem by elliptical cylinders subjected to monochromatic incident waves. In fact, Green's function represents the solution of the so-called locked wave component of the second-order velocity potential. The mathematical analysis starts with a proper analytic formulation of the second-order diffraction potential that results in the inhomogeneous Helmholtz equation. The associated boundary-value problem is treated by applying Green's theorem to obtain a closed-form solution for Green's function. Green's function is initially expressed in polar coordinates while its final elliptic form is produced through the proper employment of addition theorems. © 2011 Springer Science+Business Media B.V. en
heal.journalName Journal of Engineering Mathematics en
dc.identifier.doi 10.1007/s10665-011-9464-6 en
dc.identifier.volume 72 en
dc.identifier.issue 1 en
dc.identifier.spage 87 en
dc.identifier.epage 105 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής