dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Raikoftsalis, T |
en |
dc.date.accessioned |
2014-03-01T02:14:48Z |
|
dc.date.available |
2014-03-01T02:14:48Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
03730956 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30124 |
|
dc.subject |
Banach space theory |
en |
dc.subject |
Hereditarfly indecomposab' spaces |
en |
dc.subject |
Indecomposable spaces |
en |
dc.subject |
Interpolation methods |
en |
dc.subject |
Saturated |
en |
dc.subject |
Saturated norms |
en |
dc.title |
The cofinal property of the reflexive indecomposable banach spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.5802/aif.2697 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.5802/aif.2697 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably l-saturated space with I < p < ∞ and of a Cu saturated space. |
en |
heal.journalName |
Annales de l'Institut Fourier |
en |
dc.identifier.doi |
10.5802/aif.2697 |
en |
dc.identifier.volume |
62 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
45 |
en |