HEAL DSpace

The free (open) boundary condition with integral constitutive equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mitsoulis, E en
dc.contributor.author Malamataris, NA en
dc.date.accessioned 2014-03-01T02:14:49Z
dc.date.available 2014-03-01T02:14:49Z
dc.date.issued 2012 en
dc.identifier.issn 03770257 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30128
dc.subject Free (open) boundary condition en
dc.subject Integral Maxwell fluid en
dc.subject K-BKZ model en
dc.subject Newtonian fluid en
dc.subject Non-isothermal flows en
dc.subject Viscoelastic flows en
dc.subject.other Finite element method FEM en
dc.subject.other Material parameter en
dc.subject.other Maxwell fluid en
dc.subject.other Newtonian fluids en
dc.subject.other Nonisothermal flows en
dc.subject.other Numerical results en
dc.subject.other Outflow condition en
dc.subject.other Planar flow en
dc.subject.other Poiseuille flow en
dc.subject.other Single relaxation time en
dc.subject.other Test case en
dc.subject.other UCM model en
dc.subject.other Upper-convected maxwell fluids en
dc.subject.other Visco-elastic fluid en
dc.subject.other Viscoelastic flows en
dc.subject.other Boundary conditions en
dc.subject.other Constitutive equations en
dc.subject.other Finite element method en
dc.subject.other Maxwell equations en
dc.subject.other Polymer melts en
dc.subject.other Viscoelasticity en
dc.subject.other Integral equations en
dc.title The free (open) boundary condition with integral constitutive equations en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jnnfm.2012.04.009 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jnnfm.2012.04.009 en
heal.publicationDate 2012 en
heal.abstract The free (or open) boundary condition (FBC, OBC) was proposed by Papanastasiou et al. (A new outflow boundary condition, Int. J. Numer. Methods Fluids 14 (1992) 587-608) to handle truncated domains with synthetic boundaries where the outflow conditions are unknown. In the present work, implementation of the FBC has been extended to viscoelastic fluids governed by integral constitutive equations. As such we consider here the K-BKZ/PSM model, which also reduces to the upper-convected Maxwell fluid (UCM) for a single relaxation time and an appropriate choice of material parameters. The Finite Element Method (FEM) is used to provide numerical results in simple test cases, such as planar flow at an angle and Poiseuille flow in a tube where analytical solutions exist for checking purposes. Then previous numerical results obtained with the differential UCM model are checked in highly viscoelastic flows in a 4:1 contraction. Finally, the FBC is used with the K-BKZ/PSM model with data corresponding to a benchmark polymer melt (the IUPAC-LDPE melt). Particular emphasis is based on a non-zero second normal-stress difference, which has been reported in the literature to cause problems and seems responsible for earlier loss of convergence. The results with the FBC in short domains are in excellent agreement with those obtained from long domains used until now to accommodate the highly convective nature of the stresses in viscoelastic flows, for which the FBC seems most appropriate. © 2012 Elsevier B.V. en
heal.journalName Journal of Non-Newtonian Fluid Mechanics en
dc.identifier.doi 10.1016/j.jnnfm.2012.04.009 en
dc.identifier.volume 177-178 en
dc.identifier.spage 97 en
dc.identifier.epage 108 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής