dc.contributor.author |
Nowsheen, S |
en |
dc.contributor.author |
Aziz, K |
en |
dc.contributor.author |
Kryston, TB |
en |
dc.contributor.author |
Ferguson, NF |
en |
dc.contributor.author |
Georgakilas, A |
en |
dc.date.accessioned |
2014-03-01T02:14:49Z |
|
dc.date.available |
2014-03-01T02:14:49Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
15665240 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30134 |
|
dc.subject |
Carcinogenesis |
en |
dc.subject |
DNA damage |
en |
dc.subject |
Genomic instability |
en |
dc.subject |
Inflammation |
en |
dc.subject |
Oxidative stress |
en |
dc.subject |
Tumor microenvironment |
en |
dc.subject.other |
alpha tocopherol |
en |
dc.subject.other |
beta catenin |
en |
dc.subject.other |
bevacizumab |
en |
dc.subject.other |
BRCA1 protein |
en |
dc.subject.other |
capecitabine |
en |
dc.subject.other |
catalase |
en |
dc.subject.other |
caveolin 1 |
en |
dc.subject.other |
ferritin |
en |
dc.subject.other |
gelatinase A |
en |
dc.subject.other |
glutathione peroxidase |
en |
dc.subject.other |
hydroxyl radical |
en |
dc.subject.other |
hypoxia inducible factor 1alpha |
en |
dc.subject.other |
iron |
en |
dc.subject.other |
macrophage migration inhibition factor |
en |
dc.subject.other |
nicotinamide adenine dinucleotide phosphate |
en |
dc.subject.other |
protein c fos |
en |
dc.subject.other |
protein c jun |
en |
dc.subject.other |
protein p53 |
en |
dc.subject.other |
Rac1 protein |
en |
dc.subject.other |
reactive nitrogen species |
en |
dc.subject.other |
reactive oxygen metabolite |
en |
dc.subject.other |
redox effector factor 1 |
en |
dc.subject.other |
scatter factor |
en |
dc.subject.other |
superoxide dismutase |
en |
dc.subject.other |
transcription factor Snail |
en |
dc.subject.other |
transcription factor Twist |
en |
dc.subject.other |
transforming growth factor beta |
en |
dc.subject.other |
uvomorulin |
en |
dc.subject.other |
angiogenesis |
en |
dc.subject.other |
apoptosis |
en |
dc.subject.other |
article |
en |
dc.subject.other |
autophagy |
en |
dc.subject.other |
breast cancer |
en |
dc.subject.other |
cancer chemotherapy |
en |
dc.subject.other |
cancer prognosis |
en |
dc.subject.other |
carcinogenesis |
en |
dc.subject.other |
cell death |
en |
dc.subject.other |
cell invasion |
en |
dc.subject.other |
cell migration |
en |
dc.subject.other |
cell proliferation |
en |
dc.subject.other |
cell survival |
en |
dc.subject.other |
chemoprophylaxis |
en |
dc.subject.other |
DNA damage |
en |
dc.subject.other |
DNA methylation |
en |
dc.subject.other |
double stranded DNA break |
en |
dc.subject.other |
endothelial progenitor cell |
en |
dc.subject.other |
epithelial mesenchymal transition |
en |
dc.subject.other |
excision repair |
en |
dc.subject.other |
fibroblast |
en |
dc.subject.other |
genomic instability |
en |
dc.subject.other |
heterozygosity loss |
en |
dc.subject.other |
homologous recombination |
en |
dc.subject.other |
human |
en |
dc.subject.other |
hypoxia |
en |
dc.subject.other |
inflammation |
en |
dc.subject.other |
metastasis |
en |
dc.subject.other |
microsatellite instability |
en |
dc.subject.other |
mismatch repair |
en |
dc.subject.other |
mutagenesis |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
overall survival |
en |
dc.subject.other |
oxidative stress |
en |
dc.subject.other |
pH |
en |
dc.subject.other |
phase 3 clinical trial (topic) |
en |
dc.subject.other |
stroma |
en |
dc.subject.other |
tissue pressure |
en |
dc.subject.other |
tumor growth |
en |
dc.subject.other |
tumor microenvironment |
en |
dc.title |
The interplay between inflammation and oxidative stress in carcinogenesis |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2174/156652412800792642 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2174/156652412800792642 |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
Emerging data suggest that primary dysfunction in the tumor microenvironment is crucial for carcinogenesis. These recent findings make a compelling case for targeting the milieu for cancer chemoprevention as well as therapy. The stroma is an integral part of its physiology, and functionally, one cannot totally dissociate the tumor surrounding from the tumor cells. A thorough understanding of the tumor and stroma will aid us in developing new treatment targets. In this review, we shed light at the key aspects of the carcinogenic process and how oxidative stress and inflammation contribute to this process. We dissect the connection between metastasis and oxidative stress and focus on the key players in the tumor microenvironment that leads to inflammation, oxidative stress and DNA damage. Moreover, we consider the role of inflammation in disease, specifically cancer and metastasis. Finally, we discuss the potential applications in prognosis and cancer treatment. © 2012 Bentham Science Publishers. |
en |
heal.journalName |
Current Molecular Medicine |
en |
dc.identifier.doi |
10.2174/156652412800792642 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
672 |
en |
dc.identifier.epage |
680 |
en |