HEAL DSpace

The truncated Stieltjes moment problem solved by using kernel density functions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gavriliadis, PN en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T02:14:50Z
dc.date.available 2014-03-01T02:14:50Z
dc.date.issued 2012 en
dc.identifier.issn 03770427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30141
dc.subject Ill-posed problem en
dc.subject Kernel density function en
dc.subject Moment asymptotics en
dc.subject Probability density function en
dc.subject Tail behavior en
dc.subject Truncated Stieltjes moment problem en
dc.subject.other Asymptotics en
dc.subject.other Ill posed problem en
dc.subject.other Kernel density function en
dc.subject.other Stieltjes moment problems en
dc.subject.other Tail behavior en
dc.subject.other Approximation theory en
dc.subject.other Probability density function en
dc.subject.other Theorem proving en
dc.subject.other Algorithms en
dc.title The truncated Stieltjes moment problem solved by using kernel density functions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cam.2012.05.015 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cam.2012.05.015 en
heal.language English en
heal.publicationDate 2012 en
heal.abstract In this work the problem of the approximate numerical determination of a semi-infinite supported, continuous probability density function (pdf) from a finite number of its moments is addressed. The target space is carefully defined and an approximation theorem is proved, establishing that the set of all convex superpositions of appropriate Kernel Density Functions (KDFs) is dense in this space. A solution algorithm is provided, based on the established approximate representation of the target pdf and the exploitation of some theoretical results concerning moment sequence asymptotics. The solution algorithm also permits us to recover the tail behavior of the target pdf and incorporate this information in our solution. A parsimonious formulation of the proposed solution procedure, based on a novel sequentially adaptive scheme is developed, enabling a very efficient moment data inversion. The whole methodology is fully illustrated by numerical examples. © 2012 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.doi 10.1016/j.cam.2012.05.015 en
dc.identifier.volume 236 en
dc.identifier.issue 17 en
dc.identifier.spage 4193 en
dc.identifier.epage 4213 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής