dc.contributor.author |
Provatidis, CG |
en |
dc.date.accessioned |
2014-03-01T02:14:52Z |
|
dc.date.available |
2014-03-01T02:14:52Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.issn |
00256455 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30158 |
|
dc.subject |
Elasticity |
en |
dc.subject |
Finite elements |
en |
dc.subject |
Global approximation |
en |
dc.subject |
Gordon-Coons interpolation |
en |
dc.subject.other |
3D Finite element |
en |
dc.subject.other |
Blending function |
en |
dc.subject.other |
Coons-Gordon interpolation |
en |
dc.subject.other |
Cubic B-splines |
en |
dc.subject.other |
Elasticity problems |
en |
dc.subject.other |
Finite Element |
en |
dc.subject.other |
Global approximation |
en |
dc.subject.other |
Internal nodes |
en |
dc.subject.other |
Lagrange polynomials |
en |
dc.subject.other |
Macro element |
en |
dc.subject.other |
Mesh density |
en |
dc.subject.other |
Numerical solution |
en |
dc.subject.other |
Patch tests |
en |
dc.subject.other |
Piecewise-linear |
en |
dc.subject.other |
Simple structures |
en |
dc.subject.other |
Test case |
en |
dc.subject.other |
Trial functions |
en |
dc.subject.other |
Blending |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Piecewise linear techniques |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
Interpolation |
en |
dc.title |
Two-dimensional elastostatic analysis using Coons-Gordon interpolation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11012-011-9489-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11012-011-9489-y |
en |
heal.publicationDate |
2012 |
en |
heal.abstract |
During the last years blending-function (Coons') interpolation has been utilized for the construction of large 2D and 3D finite elements with degrees of freedom appearing along the boundaries of the domain. In the particular case of elasticity problems, these so-called ""boundary-only Coons macroelements"" have been applied to the analysis of simple structures in which adequate accuracy was remarked. This paper continues the research investigating, for the first time, the role of internal nodes in the accuracy of the numerical solution using various trial functions along the boundary in conjunction with various blending functions (piecewise-linear, cubic Bsplines and Lagrange polynomials). The performance and limits of the proposed Coons-Gordon macroelements are tested in typical 2D elastostatic examples, where they are also compared with conventional fournode bilinear finite elements of the same mesh density. It was definitely found that although the 'boundaryonly formulation' of the proposed Coons macroelements successfully pass some well-established patch tests and may be very accurate in some simple test cases, in general, it must be substituted by the 'transfinite formulation' (Coons-Gordon) where a sufficient number of internal nodes is necessary to ensure convergence. © Springer Science+Business Media B.V. 2011. |
en |
heal.journalName |
Meccanica |
en |
dc.identifier.doi |
10.1007/s11012-011-9489-y |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
951 |
en |
dc.identifier.epage |
967 |
en |