HEAL DSpace

FAST TECHNIQUE FOR AUTOMATIC SEGMENTATION AND CLASSIFICATION OF TEXTURED IMAGES.

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Boutalis, Yiannis en
dc.contributor.author Kollias, Stefanos en
dc.contributor.author Carayannis, George en
dc.contributor.author Sukissian, Levon en
dc.date.accessioned 2014-03-01T02:40:51Z
dc.date.available 2014-03-01T02:40:51Z
dc.date.issued 1988 en
dc.identifier.issn 07367791 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30253
dc.subject a priori information en
dc.subject Automatic Segmentation en
dc.subject Computational Complexity en
dc.subject Distance Measure en
dc.subject Image Modeling en
dc.subject Parameter Estimation en
dc.subject.other SIGNAL FILTERING AND PREDICTION en
dc.subject.other STATISTICAL METHODS en
dc.subject.other AR IMAGE MODEL en
dc.subject.other AUTOREGRESSIVE IMAGE MODEL PARAMETER ESTIMATION en
dc.subject.other STATISTICAL DISTANCE MEASURE en
dc.subject.other TEXTURED IMAGES SEGMENTATION en
dc.subject.other IMAGE PROCESSING en
dc.title FAST TECHNIQUE FOR AUTOMATIC SEGMENTATION AND CLASSIFICATION OF TEXTURED IMAGES. en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICASSP.1988.196796 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICASSP.1988.196796 en
heal.publicationDate 1988 en
heal.abstract A fast, computationally efficient method for automatic segmentation and classification of textured images is presented. The method does not necessarily need a-priori information about the textures present in the image, thus avoiding the necessity of a training set of textures. A fast adaptive multichannel technique for autoregressive image model parameter estimation with fast tracking capabilities and a powerful statistical distance measure are appropriately interweaved to form the proposed technique. Specific properties of the estimation part of the algorithm are exploited to reduce greatly the computational complexity of the distance measure. Some interesting extensions of the method are discussed and examples are given which illustrate the performance of the algorithm. en
heal.publisher IEEE, New York, NY, USA en
heal.journalName ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings en
dc.identifier.doi 10.1109/ICASSP.1988.196796 en
dc.identifier.spage 1132 en
dc.identifier.epage 1135 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής