dc.contributor.author |
Souflis, JL |
en |
dc.contributor.author |
Machias, AV |
en |
dc.contributor.author |
Papadias, BC |
en |
dc.date.accessioned |
2014-03-01T02:40:53Z |
|
dc.date.available |
2014-03-01T02:40:53Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
02714310 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30263 |
|
dc.subject |
Electric Power System |
en |
dc.subject |
Feature Selection |
en |
dc.subject |
Fuzzy Membership Function |
en |
dc.subject |
Large Scale |
en |
dc.subject |
Pattern Recognition |
en |
dc.subject |
Power System |
en |
dc.subject |
Set Theory |
en |
dc.subject |
Transient Behavior |
en |
dc.subject |
Transient Stability |
en |
dc.subject.other |
Electric Networks--Transients |
en |
dc.subject.other |
Mathematical Techniques--Vectors |
en |
dc.subject.other |
Pattern Recognition |
en |
dc.subject.other |
System Stability |
en |
dc.subject.other |
Fuzzy Membership Functions |
en |
dc.subject.other |
Pattern Vector Determination |
en |
dc.subject.other |
Perceptron Algorithm |
en |
dc.subject.other |
Power System Transient Stability |
en |
dc.subject.other |
Electric Power Systems |
en |
dc.title |
Transient stability evaluation of electric power systems using a fuzzy perceptron algorithm |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISCAS.1988.15243 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISCAS.1988.15243 |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
A method which can be used to rapidly evaluate the transient stability condition of an electric power system is described. The stability evaluation is performed by using a pattern recognition approach incorporating fuzzy membership functions into the Perceptron algorithm. The latter algorithm is used to derive a classifier that classifies the system operating states either to the class of stable states or to the class of unstable states. The feature selection is made by using a suitable function F and a set of data representing the transient behavior of a network after the occurrence of specific larged disturbances. The results obtained are illustrated by the analysis of a sample power system. |
en |
heal.publisher |
Publ by IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Proceedings - IEEE International Symposium on Circuits and Systems |
en |
dc.identifier.doi |
10.1109/ISCAS.1988.15243 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1619 |
en |
dc.identifier.epage |
1622 |
en |