dc.contributor.author |
Dalianis, PJ |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Anthopoulos, G |
en |
dc.date.accessioned |
2014-03-01T02:40:58Z |
|
dc.date.available |
2014-03-01T02:40:58Z |
|
dc.date.issued |
1993 |
en |
dc.identifier.issn |
08843627 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30297 |
|
dc.subject |
backpropagation |
en |
dc.subject |
backpropagation neural network |
en |
dc.subject |
Dynamic Properties |
en |
dc.subject |
Energy Function |
en |
dc.subject |
Generalization Capability |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Backpropagation neural networks |
en |
dc.subject.other |
Energy function |
en |
dc.subject.other |
Overtraining phenomenon |
en |
dc.subject.other |
Probability density function |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Study of the generalization capability versus training in backpropagation neural networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICSMC.1993.390760 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICSMC.1993.390760 |
en |
heal.publicationDate |
1993 |
en |
heal.abstract |
In this paper, the phenomenon of overtraining in backpropagation neural networks is discussed. The relationships between network size, training set size and generalization capabilities are examined. An extension to an existing algorithm of backpropagation is described. The extended algorithm provides a new energy function and its advantages, such as improved plasticity and performance along with its dynamic properties, are explained. The algorithm is applied to some common problems and simulation results are presented and discussed. |
en |
heal.publisher |
Publ by IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics |
en |
dc.identifier.doi |
10.1109/ICSMC.1993.390760 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
485 |
en |
dc.identifier.epage |
490 |
en |