HEAL DSpace

Efficient image classification using neural networks and multiresolution analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tirakis, Andreas en
dc.contributor.author Kollias, Stefanos en
dc.date.accessioned 2014-03-01T02:40:58Z
dc.date.available 2014-03-01T02:40:58Z
dc.date.issued 1993 en
dc.identifier.issn 07367791 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30301
dc.subject Image Classification en
dc.subject Is Success en
dc.subject multiresolution analysis en
dc.subject Feedforward Neural Network en
dc.subject Neural Network en
dc.subject.other Classification (of information) en
dc.subject.other Computer architecture en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Feedforward neural networks en
dc.subject.other Image classification en
dc.subject.other Multiresolution analysis en
dc.subject.other Multiresolution classification en
dc.subject.other Image processing en
dc.title Efficient image classification using neural networks and multiresolution analysis en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICASSP.1993.319200 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICASSP.1993.319200 en
heal.publicationDate 1993 en
heal.abstract In this paper, we investigate a new efficient image classification strategy. We propose a multiresolution analysis of the images to be classified and use of feedforward neural networks to classify the images at various lower resolutions. This approach results in a major reduction of the networks' interconnection weights as well as the required learning times. The proposed approach is applied first to the images of the lowest resolution; if the classification results are not acceptable, it is successively repeated to the next images of higher resolution. A neural network architecture which incorporates most of the interconnection weights already computed at the lower level (i.e., the knowledge already acquired by the network of the previous resolution level) is proposed for this purpose. Experimental results illustrate the efficiency of the proposed multiresolution classification procedure in a real life application. en
heal.publisher Publ by IEEE, Piscataway, NJ, United States en
heal.journalName Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing en
dc.identifier.doi 10.1109/ICASSP.1993.319200 en
dc.identifier.volume 1 en
dc.identifier.spage I en
dc.identifier.epage 641-I-643 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής