dc.contributor.author |
Ventouras, E |
en |
dc.contributor.author |
Kitsonas, M |
en |
dc.contributor.author |
Hadjiagapis, S |
en |
dc.contributor.author |
Uzunoglu, N |
en |
dc.contributor.author |
Papageorgiou, C |
en |
dc.contributor.author |
Rabavilas, A |
en |
dc.contributor.author |
Stefanis, C |
en |
dc.date.accessioned |
2014-03-01T02:40:59Z |
|
dc.date.available |
2014-03-01T02:40:59Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30313 |
|
dc.subject |
Associative Memory |
en |
dc.subject |
Dynamic Behavior |
en |
dc.subject |
Pattern Recognition |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Brain models |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neurophysiology |
en |
dc.subject.other |
Optical correlation |
en |
dc.subject.other |
Parallel processing systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Neural populations |
en |
dc.subject.other |
Noise corrupted inputs |
en |
dc.subject.other |
Physiological neurons |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Network of physiological neurons with differentiated excitatory and inhibitory units possessing pattern recognition capacity |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/NNSP.1994.366047 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/NNSP.1994.366047 |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
A novel neural network is proposed with different excitatory and inhibitory neural populations. This property conforms with the so-called Dale's hypothesis that applies to neurons of the mammalian brain. The network possesses the ability to store correlated-overlapping patterns and to categorize properly incomplete and noise corrupted inputs. It has the ability to function at realistically low firing rates, such as those found in cortex (15-40 Hz), and to store sparse patterns. Current investigations concern the assessment of the storage capacity of the network and its application in Massively Parallel Computers of the Multiple Instructions-Multiple Data (MIMD) type. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Neural Networks for Signal Processing - Proceedings of the IEEE Workshop |
en |
dc.identifier.doi |
10.1109/NNSP.1994.366047 |
en |
dc.identifier.spage |
204 |
en |
dc.identifier.epage |
208 |
en |