dc.contributor.author |
Kladas Antonios, G |
en |
dc.contributor.author |
Tegopoulos John, A |
en |
dc.date.accessioned |
2014-03-01T02:41:00Z |
|
dc.date.available |
2014-03-01T02:41:00Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0018-9464 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30320 |
|
dc.subject |
Analytic Solution |
en |
dc.subject |
Eddy Current |
en |
dc.subject |
Finite Element Method |
en |
dc.subject |
Iron |
en |
dc.subject |
Numerical Analysis |
en |
dc.subject |
Skin Effect |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Calculations |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Ferromagnetic materials |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Iron |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Element enabling efficient modelling |
en |
dc.subject.other |
Harmonic diffusion equation |
en |
dc.subject.other |
Laplace equation |
en |
dc.subject.other |
Solid iron |
en |
dc.subject.other |
Thin skin effect depths |
en |
dc.subject.other |
Eddy currents |
en |
dc.title |
Eddy currents modeling in solid iron by using analytic elements |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/20.312578 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/20.312578 |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
The numerical analysis of problems involving eddy currents developed in thin skin effect depths, based on the classical finite element method, is extremely laborious and time consuming. Furthermore, the related geometries are not, usually, simple enough to permit an analytical solution. The present work is based on a new type of element enabling efficient modelling in such cases. It combines the increased accuracy and speed of analytical solutions for large subdomains, a reduced number of unknowns and the advantages of functional minimization procedures. An example concerning eddy currents calculation in a solid iron salient part is used to test the method's performance. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE Transactions on Magnetics |
en |
dc.identifier.doi |
10.1109/20.312578 |
en |
dc.identifier.isi |
ISI:A1994PD54200046 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
5 pt 2 |
en |
dc.identifier.spage |
3040 |
en |
dc.identifier.epage |
3043 |
en |