HEAL DSpace

Fault diagnosis in complex systems using artificial neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Dalianis, PJ en
dc.date.accessioned 2014-03-01T02:41:01Z
dc.date.available 2014-03-01T02:41:01Z
dc.date.issued 1994 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30326
dc.subject Adaptive Method en
dc.subject Artificial Neural Network en
dc.subject backpropagation en
dc.subject Complex System en
dc.subject Condition Monitoring en
dc.subject Fault Diagnosis en
dc.subject Manufacturing System en
dc.subject Nonlinear System en
dc.subject Radial Basis Function en
dc.subject Real World Application en
dc.subject System Performance en
dc.subject Neural Network en
dc.subject.other Adaptive systems en
dc.subject.other Algorithms en
dc.subject.other Backpropagation en
dc.subject.other Computer simulation en
dc.subject.other Error detection en
dc.subject.other Function evaluation en
dc.subject.other Knowledge based systems en
dc.subject.other Large scale systems en
dc.subject.other Mathematical models en
dc.subject.other Nonlinear control systems en
dc.subject.other Online systems en
dc.subject.other Pattern recognition en
dc.subject.other Adaptive methods en
dc.subject.other Backpropagation networks en
dc.subject.other Complex nonlinear functions en
dc.subject.other Expert diagnostic knowledge en
dc.subject.other Fault diagnosis en
dc.subject.other Manufacturing systems en
dc.subject.other Neuron en
dc.subject.other Radial basis function en
dc.subject.other Symptom interpretation en
dc.subject.other Neural networks en
dc.title Fault diagnosis in complex systems using artificial neural networks en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CCA.1994.381206 en
heal.identifier.secondary http://dx.doi.org/10.1109/CCA.1994.381206 en
heal.publicationDate 1994 en
heal.abstract Very complex technical and other physical processes require sophisticated methods of fault diagnosis and on-line condition monitoring. Various conventional techniques have already been well investigated and presented in the literature. However, the last few years, a lot of attention is given to adaptive methods based on artificial neural networks, which can significantly improve the symptom interpretation and system performance in case of malfunctioning. Such methods are especially considered in cases where no explicit algorithms or models for the problem under investigation exist. In such problems, automatic interpretation of faulty symptoms with the use of artificial neural network classifiers is recommended. Two different models of artificial neural networks, the extended backpropagation and the radial basis function, are discussed and applied with appropriate simulations for a real world applications in a chemical manufacturing plant. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName Proceedings of the IEEE Conference on Control Applications en
dc.identifier.doi 10.1109/CCA.1994.381206 en
dc.identifier.volume 2 en
dc.identifier.spage 877 en
dc.identifier.epage 882 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής