dc.contributor.author |
Stamou, AI |
en |
dc.date.accessioned |
2014-03-01T02:41:02Z |
|
dc.date.available |
2014-03-01T02:41:02Z |
|
dc.date.issued |
1994 |
en |
dc.identifier.issn |
0273-1223 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30334 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0028033013&partnerID=40&md5=de641a2223b68269158b8b7a58ef003e |
en |
dc.subject |
Dispersion coefficient |
en |
dc.subject |
Hydrodynamics |
en |
dc.subject |
IAWPRC model |
en |
dc.subject |
Mathematical models |
en |
dc.subject |
Oxidation ditches |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Chemical oxygen demand |
en |
dc.subject.other |
Concentration (process) |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Finite volume method |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Aerobic oxidation ditch |
en |
dc.subject.other |
Dissolved oxygen |
en |
dc.subject.other |
Heterotrophs |
en |
dc.subject.other |
Hydrodynamic effects |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
dissolved oxygen |
en |
dc.subject.other |
activated sludge |
en |
dc.subject.other |
biomass |
en |
dc.subject.other |
chemical oxygen demand |
en |
dc.subject.other |
concentration |
en |
dc.subject.other |
conference paper |
en |
dc.subject.other |
hydrodynamics |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
oxygen consumption |
en |
dc.subject.other |
productivity |
en |
dc.subject.other |
steady state |
en |
dc.subject.other |
velocity |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
water flow |
en |
dc.subject.other |
Ditches |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Modelling-Mathematical |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Sewage Treatment |
en |
dc.title |
Modeling oxidation ditches using the IAWPRC activated sludge model with hydrodynamic effects |
en |
heal.type |
conferenceItem |
en |
heal.language |
English |
en |
heal.publicationDate |
1994 |
en |
heal.abstract |
A mathematical model is presented to predict the concentrations of the active heterotrophic biomass, the readily biodegradable substrate (soluble COD) and the dissolved oxygen (DO) in a completely aerobic oxidation ditch. The model involves the one-dimensional convection-dispersion equations for biomass, COD and DO. Hydrodynamic effects are represented in the model by the values of the average flow velocity and the dispersion coefficient. Biological processes are described in the model according to the IAWPRC activated sludge model, using typical values for the model parameters at 10°C. The equations are solved with the finite volume method. The application of the model leads to the following conclusions: (i) Steady state biomass concentrations are almost constant throughout the ditch. (ii) Steady state COD concentrations in the ditch are very low, and COD removal efficiency is practically independent of the values of the flow velocity and the dispersion coefficient. The distribution of the COD concentration in the ditch is less uniform, when small values of the dispersion coefficient are used. (iii) The distribution of the DO concentration in the ditch is very sensitive to the values of the flow velocity, the dispersion coefficient and to the capacity of the rotors. DO concentrations increase when the dispersion coefficient decreases or the flow velocity increases. (v) Daily sludge production, oxygen requirements and sludge age are calculated equal to 0.44 g (g COD removed)-1, 0.56 g (g incoming COD)-1 and 6.3 days, respectively.A mathematical model is used to predict the concentrations of the active heterotrophic biomass, the readily biodegradable substrate (soluble COD) and the dissolved oxygen (DO) in a completely aerobic oxidation ditch. It involves the one-dimensional convection-dispersion equations for biomass, COD, and DO. Hydrodynamic effects are represented in the model by the values of the average flow velocity and the dispersion coefficient. Biological processes are described in the model according to the IAWPRC activated sludge model. The equations are solved with the finite volume method. |
en |
heal.publisher |
Pergamon Press Inc, Tarrytown, NY, United States |
en |
heal.journalName |
Water Science and Technology |
en |
dc.identifier.isi |
ISI:A1994PW23700021 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.issue |
2 pt 2 |
en |
dc.identifier.spage |
185 |
en |
dc.identifier.epage |
192 |
en |