dc.contributor.author |
Kalogeras, Dimitrios |
en |
dc.contributor.author |
Kollias, Stefanos |
en |
dc.date.accessioned |
2014-03-01T02:41:06Z |
|
dc.date.available |
2014-03-01T02:41:06Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30364 |
|
dc.subject |
Communication System |
en |
dc.subject |
Image Sequence |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Region of Interest |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image coding |
en |
dc.subject.other |
Image compression |
en |
dc.subject.other |
Teleconferencing |
en |
dc.subject.other |
Low bit rate image coding |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Low bit rate coding of image sequences using neural networks |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICNN.1995.488877 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICNN.1995.488877 |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
Neural networks are proposed in this paper as an efficient means for extending international image image sequence coding standards to achieve low bit rates for transmission in modern communication systems. In particular a structured neural network architecture is proposed for adaptively selecting regions of interest (ROI) in the images to be coded; high compression is obtained by using different quantization in each selected region region category. Simulation results illustrate the performance of the technique using videoconference sequences. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE International Conference on Neural Networks - Conference Proceedings |
en |
dc.identifier.doi |
10.1109/ICNN.1995.488877 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
1708 |
en |
dc.identifier.epage |
1712 |
en |