HEAL DSpace

Recognition of unvoiced stops from their time-frequency representation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rangoussi, Maria en
dc.contributor.author Delopoulos, Anastasios en
dc.date.accessioned 2014-03-01T02:41:07Z
dc.date.available 2014-03-01T02:41:07Z
dc.date.issued 1995 en
dc.identifier.issn 07367791 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30373
dc.subject Learning Vector Quantization en
dc.subject Signal Extraction en
dc.subject Time Frequency Analysis en
dc.subject Time Frequency Representation en
dc.subject Wigner Distribution en
dc.subject Speaker Independent en
dc.subject.other Database systems en
dc.subject.other Feature extraction en
dc.subject.other Pattern recognition systems en
dc.subject.other Speech en
dc.subject.other Speech analysis en
dc.subject.other Classification (of information) en
dc.subject.other Frequency domain analysis en
dc.subject.other Speech processing en
dc.subject.other Time domain analysis en
dc.subject.other Vector quantization en
dc.subject.other Learning vector quantization en
dc.subject.other Speech database en
dc.subject.other Time frequency representation en
dc.subject.other Unvoiced stop signals en
dc.subject.other Learning vector quantization classifier en
dc.subject.other Phonemes en
dc.subject.other Unvoiced stops recognition en
dc.subject.other Wigner distribution en
dc.subject.other Speech recognition en
dc.title Recognition of unvoiced stops from their time-frequency representation en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICASSP.1995.479813 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICASSP.1995.479813 en
heal.publicationDate 1995 en
heal.abstract Recognition of the unvoiced stop sounds /k/, /p/ and /t/ in a speech signal is an interesting problem, due to the irregular, aperiodic, nonstationary nature of the corresponding signals. Their spotting is much easier, however, thanks to the characteristic silence interval they include. Classification of these three phonemes is therefore proposed in the present paper, based on patterns extracted from their time - frequency representation. This is possible because the different articulation points of /k/, /p/ and /t/ are reflected into distinct patterns of evolution of their spectral contents with time. These patterns can be obtained by suitable time - frequency analysis, and then used for classification. The Wigner distribution of the unvoiced stop signals, appropriately smoothed and subsampled, is proposed here as the basic classification pattern. Finally, for the classification step, the Learning Vector Quantization (LVQ) classifier of Kohonen is employed on a set of unvoiced stop signals extracted from the TIMIT speech database, with encouraging results under context- and speaker- independent testing conditions. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings en
dc.identifier.doi 10.1109/ICASSP.1995.479813 en
dc.identifier.volume 1 en
dc.identifier.spage 792 en
dc.identifier.epage 795 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής