dc.contributor.author |
Paraskevopoulos, PN |
en |
dc.contributor.author |
Tsirikos, AS |
en |
dc.contributor.author |
Karagianni, EA |
en |
dc.date.accessioned |
2014-03-01T02:41:07Z |
|
dc.date.available |
2014-03-01T02:41:07Z |
|
dc.date.issued |
1995 |
en |
dc.identifier.issn |
01912216 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30375 |
|
dc.subject |
Analytic Solution |
en |
dc.subject |
Feedback Control |
en |
dc.subject |
Inverted Pendulum |
en |
dc.subject |
lyapunov function |
en |
dc.subject |
Model Matching |
en |
dc.subject |
Nonlinear System |
en |
dc.subject |
Parameter Uncertainty |
en |
dc.subject |
Partial Differential Equation |
en |
dc.subject |
Robust Design |
en |
dc.subject |
State Feedback Control |
en |
dc.subject |
First Order |
en |
dc.subject |
Input Output |
en |
dc.subject.other |
Closed loop control systems |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Feedback control |
en |
dc.subject.other |
Linearization |
en |
dc.subject.other |
Lyapunov methods |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Pendulums |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Closed loop systems |
en |
dc.subject.other |
Inverted pendulum |
en |
dc.subject.other |
Linear exact model matching |
en |
dc.subject.other |
Linear system |
en |
dc.subject.other |
Robust tracking |
en |
dc.subject.other |
Third order nonlinear system |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.title |
Robust tracking of an inverted pendulum via a new linear exact model matching technique |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CDC.1995.480381 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CDC.1995.480381 |
en |
heal.publicationDate |
1995 |
en |
heal.abstract |
In this paper a new approach to the robust asymptotic output tracking of an inverted pendulum is presented. The inverted pendulum is described by a third order nonlinear system. The proposed approach is as follows: First, we determine a static state feedback control law which solves the linear exact model matching (LEMM) problem resulting in an input - output (i/o) linearized closed - loop system. Second, in case where there exists a parameter uncertainty in the inverted pendulum model, we design a robust output tracking controller for the perturbed i/o linearized closed - loop system. The LEMM problem is solved using a new LEMM technique. This technique reduces the problem of finding the control law to that of solving a system of first order partial differential equations. Based on these equations, the general analytical solution for the feedback control law is derived. The robust design consists in determining the input signal of the perturbed i/o linearized closed - loop system as a function of the state vector based on the construction of an appropriate Lyapunov function. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Proceedings of the IEEE Conference on Decision and Control |
en |
dc.identifier.doi |
10.1109/CDC.1995.480381 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1676 |
en |
dc.identifier.epage |
1683 |
en |