dc.contributor.author |
Theodoridis, Yannis |
en |
dc.contributor.author |
Sellis, Timos |
en |
dc.date.accessioned |
2014-03-01T02:41:09Z |
|
dc.date.available |
2014-03-01T02:41:09Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30393 |
|
dc.subject |
Analytical Model |
en |
dc.subject |
Cost Model |
en |
dc.subject |
Indexation |
en |
dc.subject |
Query Optimization |
en |
dc.subject |
Range Query |
en |
dc.subject |
Spatial Database |
en |
dc.subject |
Uniform Distribution |
en |
dc.subject |
Relative Error |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Errors |
en |
dc.subject.other |
Estimation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Data set |
en |
dc.subject.other |
Query optimizer |
en |
dc.subject.other |
R tree |
en |
dc.subject.other |
Range query |
en |
dc.subject.other |
Data structures |
en |
dc.title |
Model for the prediction of R-tree performance |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/237661.237705 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/237661.237705 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
In this paper we present an analytical model that predicts the performance of R-trees (and its variants) when a range query needs to be answered. The cost model uses knowledge of the dataset only, i.e., the proposed formula that estimates the number of disk accesses is a function of data properties, namely, the amount of data and their density in the work space. In other words, the proposed model is applicable even before the construction of the R-tree index, a fact that makes it a useful tool for dynamic spatial databases. Several experiments on synthetic and real datasets show that the proposed analytical model is very accurate, the relative error being usually around 10%-15%, for uniform and non-uniform distributions. We believe that this error is involved with the gap between efficient R-tree variants, like the R*-tree, and an optimum, not implemented yet, method. Our work extends previous research concerning R-tree analysis and constitutes a useful tool for spatial query optimizers that need to evaluate the cost of a complex spatial query and its execution procedure. |
en |
heal.publisher |
ACM, New York, NY, United States |
en |
heal.journalName |
Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems - PODS |
en |
dc.identifier.doi |
10.1145/237661.237705 |
en |
dc.identifier.spage |
161 |
en |
dc.identifier.epage |
171 |
en |