HEAL DSpace

Model for the prediction of R-tree performance

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theodoridis, Yannis en
dc.contributor.author Sellis, Timos en
dc.date.accessioned 2014-03-01T02:41:09Z
dc.date.available 2014-03-01T02:41:09Z
dc.date.issued 1996 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30393
dc.subject Analytical Model en
dc.subject Cost Model en
dc.subject Indexation en
dc.subject Query Optimization en
dc.subject Range Query en
dc.subject Spatial Database en
dc.subject Uniform Distribution en
dc.subject Relative Error en
dc.subject.other Database systems en
dc.subject.other Errors en
dc.subject.other Estimation en
dc.subject.other Mathematical models en
dc.subject.other Numerical analysis en
dc.subject.other Optimization en
dc.subject.other Performance en
dc.subject.other Data set en
dc.subject.other Query optimizer en
dc.subject.other R tree en
dc.subject.other Range query en
dc.subject.other Data structures en
dc.title Model for the prediction of R-tree performance en
heal.type conferenceItem en
heal.identifier.primary 10.1145/237661.237705 en
heal.identifier.secondary http://dx.doi.org/10.1145/237661.237705 en
heal.publicationDate 1996 en
heal.abstract In this paper we present an analytical model that predicts the performance of R-trees (and its variants) when a range query needs to be answered. The cost model uses knowledge of the dataset only, i.e., the proposed formula that estimates the number of disk accesses is a function of data properties, namely, the amount of data and their density in the work space. In other words, the proposed model is applicable even before the construction of the R-tree index, a fact that makes it a useful tool for dynamic spatial databases. Several experiments on synthetic and real datasets show that the proposed analytical model is very accurate, the relative error being usually around 10%-15%, for uniform and non-uniform distributions. We believe that this error is involved with the gap between efficient R-tree variants, like the R*-tree, and an optimum, not implemented yet, method. Our work extends previous research concerning R-tree analysis and constitutes a useful tool for spatial query optimizers that need to evaluate the cost of a complex spatial query and its execution procedure. en
heal.publisher ACM, New York, NY, United States en
heal.journalName Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems - PODS en
dc.identifier.doi 10.1145/237661.237705 en
dc.identifier.spage 161 en
dc.identifier.epage 171 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής