dc.contributor.author |
Pavlopoulos, S |
en |
dc.contributor.author |
Konnis, G |
en |
dc.contributor.author |
Kyriacou, E |
en |
dc.contributor.author |
Koutsouris, D |
en |
dc.contributor.author |
Zoumpoulis, P |
en |
dc.contributor.author |
Theotokas, I |
en |
dc.date.accessioned |
2014-03-01T02:41:12Z |
|
dc.date.available |
2014-03-01T02:41:12Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
05891019 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30421 |
|
dc.subject |
Fractal Dimension |
en |
dc.subject |
Texture Analysis |
en |
dc.subject |
Tissue Characterization |
en |
dc.subject |
Region of Interest |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer aided diagnosis |
en |
dc.subject.other |
Diseases |
en |
dc.subject.other |
Fractals |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Tissue |
en |
dc.subject.other |
Ultrasonic imaging |
en |
dc.subject.other |
Cirrhosis |
en |
dc.subject.other |
Fractal dimension texture analysis (FDTA) |
en |
dc.subject.other |
Gray level difference statistics (GLDS) |
en |
dc.subject.other |
Hepatoma |
en |
dc.subject.other |
Liver |
en |
dc.subject.other |
Texture analysis |
en |
dc.subject.other |
Medical imaging |
en |
dc.title |
Evaluation of texture analysis techniques for quantitative characterization of ultrasonic liver images |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IEMBS.1996.652750 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IEMBS.1996.652750 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
In this study, we attempt to determine the efficacy of computer assisted ultrasonic liver tissue characterization using texture analysis techniques. Two different algorithms were used in this study; the gray level difference statistics (GLDS) and the fractal dimension texture analysis (FDTA). Both techniques were applied on three sets of ultrasonic liver images, normal-hepatoma-cirrhosis, all histologically proven. In all images, 32×32 pixel rectangular regions-of-interest were selected by specialized physicians and used in the analysis. FDTA was able to differentiate hepatoma from cirrhosis and normal liver with an accuracy of 90% and the GLDS was able to differentiate cirrhosis from normal with an accuracy of 75%. The combination of the two techniques proved to differentiate the three types with an overall accuracy of 81.7%. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
en |
dc.identifier.doi |
10.1109/IEMBS.1996.652750 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.spage |
1151 |
en |
dc.identifier.epage |
1152 |
en |