HEAL DSpace

Evaluation of texture analysis techniques for quantitative characterization of ultrasonic liver images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pavlopoulos, S en
dc.contributor.author Konnis, G en
dc.contributor.author Kyriacou, E en
dc.contributor.author Koutsouris, D en
dc.contributor.author Zoumpoulis, P en
dc.contributor.author Theotokas, I en
dc.date.accessioned 2014-03-01T02:41:12Z
dc.date.available 2014-03-01T02:41:12Z
dc.date.issued 1996 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30421
dc.subject Fractal Dimension en
dc.subject Texture Analysis en
dc.subject Tissue Characterization en
dc.subject Region of Interest en
dc.subject.other Algorithms en
dc.subject.other Computer aided diagnosis en
dc.subject.other Diseases en
dc.subject.other Fractals en
dc.subject.other Image analysis en
dc.subject.other Statistical methods en
dc.subject.other Tissue en
dc.subject.other Ultrasonic imaging en
dc.subject.other Cirrhosis en
dc.subject.other Fractal dimension texture analysis (FDTA) en
dc.subject.other Gray level difference statistics (GLDS) en
dc.subject.other Hepatoma en
dc.subject.other Liver en
dc.subject.other Texture analysis en
dc.subject.other Medical imaging en
dc.title Evaluation of texture analysis techniques for quantitative characterization of ultrasonic liver images en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.1996.652750 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.1996.652750 en
heal.publicationDate 1996 en
heal.abstract In this study, we attempt to determine the efficacy of computer assisted ultrasonic liver tissue characterization using texture analysis techniques. Two different algorithms were used in this study; the gray level difference statistics (GLDS) and the fractal dimension texture analysis (FDTA). Both techniques were applied on three sets of ultrasonic liver images, normal-hepatoma-cirrhosis, all histologically proven. In all images, 32×32 pixel rectangular regions-of-interest were selected by specialized physicians and used in the analysis. FDTA was able to differentiate hepatoma from cirrhosis and normal liver with an accuracy of 90% and the GLDS was able to differentiate cirrhosis from normal with an accuracy of 75%. The combination of the two techniques proved to differentiate the three types with an overall accuracy of 81.7%. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.1996.652750 en
dc.identifier.volume 3 en
dc.identifier.spage 1151 en
dc.identifier.epage 1152 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής