dc.contributor.author |
Vlassis, NA |
en |
dc.contributor.author |
Sgouros, NM |
en |
dc.contributor.author |
Efthivoulidis, G |
en |
dc.contributor.author |
Papakonstantinou, G |
en |
dc.contributor.author |
Tsanakas, P |
en |
dc.date.accessioned |
2014-03-01T02:41:13Z |
|
dc.date.available |
2014-03-01T02:41:13Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
10636730 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30425 |
|
dc.subject |
Indoor Environment |
en |
dc.subject |
Path Planning |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Motion control |
en |
dc.subject.other |
Motion planning |
en |
dc.subject.other |
Navigation |
en |
dc.subject.other |
Proximity sensors |
en |
dc.subject.other |
Real time systems |
en |
dc.subject.other |
Wheelchairs |
en |
dc.subject.other |
Global path planning |
en |
dc.subject.other |
Robotic wheelchairs |
en |
dc.subject.other |
Shortest path algorithms |
en |
dc.subject.other |
Mobile robots |
en |
dc.title |
Global path planning for autonomous qualitative navigation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/TAI.1996.560476 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAI.1996.560476 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
We describe a novel global path planning method for autonomous qualitative navigation in indoor environments. Global path planning operates on top of a qualitative map of the environment that describes variations in sensor behavior between adjacent regions in space. The method takes into consideration the global topology of the environment and applies a set of criteria that can minimize the errors in the navigational accuracy of a robotic wheelchair. Our approach uses a modified version of the Dijkstra's shortest path algorithm that takes into consideration the curvature of the trajectory and the off-wall distance of the map points. The algorithm computes in real-time a set of optimal paths for reaching the destination. We have tested our global path planning method in simulation in representative indoor environments with above average complexity. Based on these experiments we have determined empirically a set of values for the parameters of the algorithm that almost always lead to the selection of optimal paths in these environments. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Proceedings of the International Conference on Tools with Artificial Intelligence |
en |
dc.identifier.doi |
10.1109/TAI.1996.560476 |
en |
dc.identifier.spage |
354 |
en |
dc.identifier.epage |
359 |
en |