dc.contributor.author |
Ladas Kostas, T |
en |
dc.contributor.author |
Maniatis Theofanis, A |
en |
dc.contributor.author |
Uzunoglu Nikolaos, K |
en |
dc.date.accessioned |
2014-03-01T02:41:13Z |
|
dc.date.available |
2014-03-01T02:41:13Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30427 |
|
dc.subject |
Data Collection |
en |
dc.subject |
Field Data |
en |
dc.subject |
Helmholtz Equation |
en |
dc.subject |
Index of Refraction |
en |
dc.subject |
Inverse Scattering |
en |
dc.subject |
Inverse Scattering Problem |
en |
dc.subject |
Iterative Reconstruction |
en |
dc.subject |
Mean Square Error |
en |
dc.subject |
Refractive Index |
en |
dc.subject |
Wave Propagation |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Dielectric materials |
en |
dc.subject.other |
Electromagnetic wave propagation |
en |
dc.subject.other |
Electromagnetic wave scattering |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Refractive index |
en |
dc.subject.other |
Abstract only |
en |
dc.subject.other |
Born method |
en |
dc.subject.other |
Heitler equation |
en |
dc.subject.other |
Mean square error |
en |
dc.subject.other |
Image reconstruction |
en |
dc.title |
Inverse scattering using the Heitler equation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/AEM.1996.873048 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/AEM.1996.873048 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
The problem of reconstructing the refractive index of a dielectric body from scattered data, also known as the inverse scattering problem, is addressed using the Heitler equation. The problem is presented as a two dimensional problem described by the Helmholtz equation. The unknown index of refraction is obtained by means of an iterative reconstruction algorithm. Application of the proposed approach to the analysis of simulated scattered data indicates that it converges to a solution after a few iterations. The method is also suited for both lossy and non-lossy objects. |
en |
heal.publisher |
IEEE |
en |
heal.journalName |
Trans Black Sea Region Symposium on Applied Electromagnetism |
en |
dc.identifier.doi |
10.1109/AEM.1996.873048 |
en |