dc.contributor.author |
Sgouros, NM |
en |
dc.contributor.author |
Papakonstantinou, G |
en |
dc.contributor.author |
Tsanakas, P |
en |
dc.date.accessioned |
2014-03-01T02:41:14Z |
|
dc.date.available |
2014-03-01T02:41:14Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
10504729 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30429 |
|
dc.subject |
Indoor Environment |
en |
dc.subject |
Linear Time |
en |
dc.subject |
Numerical Simulation |
en |
dc.subject |
Obstacle Detection |
en |
dc.subject |
Path Planning |
en |
dc.subject |
Position Estimation |
en |
dc.subject |
Short Term Memory |
en |
dc.subject.other |
Adaptive control systems |
en |
dc.subject.other |
Collision avoidance |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Motion planning |
en |
dc.subject.other |
Navigation |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Position control |
en |
dc.subject.other |
Sensors |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Indoor navigation |
en |
dc.subject.other |
Localization |
en |
dc.subject.other |
Obstacle detection |
en |
dc.subject.other |
Obstacle orientation |
en |
dc.subject.other |
Offline planner |
en |
dc.subject.other |
Online controller |
en |
dc.subject.other |
Position estimation |
en |
dc.subject.other |
Mobile robots |
en |
dc.title |
Localized qualitative navigation for indoor environments |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ROBOT.1996.503890 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ROBOT.1996.503890 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
We describe a novel architecture for indoor navigation, based on qualitative representations of the variations in the interactions between the robot and its environment. We use these representations to localize and guide planning and reaction. Off-line, the system accepts as input a topological diagram of the environment. It then uses numerical simulation to generate a map, describing qualitative variations in sensor behavior between adjacent regions in space. An off-line planner stores localized navigation information at each point in the map. During execution, an adaptive controller uses a short-term memory to improve its operation. The qualitative nature of our method, along with the localization performed by the topological planner, result in a compact map representation and in linear-time performances for position estimation and path planning during execution. We have tested this architecture in simulation. Our results show that the proposed navigation method is tolerant of sensor inaccuracies, both in obstacle detection and orientation. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Proceedings - IEEE International Conference on Robotics and Automation |
en |
dc.identifier.doi |
10.1109/ROBOT.1996.503890 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
921 |
en |
dc.identifier.epage |
926 |
en |