dc.contributor.author |
Ventouras Errikos, M |
en |
dc.contributor.author |
Uzunoglu Nikos, K |
en |
dc.contributor.author |
Papageorgiou Charalambos, C |
en |
dc.contributor.author |
Rabavilas Andreas, D |
en |
dc.contributor.author |
Koutsouris Dimitrios, G |
en |
dc.contributor.author |
Stefanis Costas, N |
en |
dc.date.accessioned |
2014-03-01T02:41:16Z |
|
dc.date.available |
2014-03-01T02:41:16Z |
|
dc.date.issued |
1996 |
en |
dc.identifier.issn |
05891019 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30437 |
|
dc.subject |
Algebraic Reconstruction Technique |
en |
dc.subject |
Current Distribution |
en |
dc.subject |
Electroencephalography |
en |
dc.subject |
event-related potential erp |
en |
dc.subject |
Matrix Inversion |
en |
dc.subject |
Noisy Data |
en |
dc.subject |
Performance Evaluation |
en |
dc.subject |
Direct Matrix Inversion |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Bioelectric potentials |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Electric current distribution |
en |
dc.subject.other |
Electroencephalography |
en |
dc.subject.other |
Image reconstruction |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Spurious signal noise |
en |
dc.subject.other |
Algebraic reconstruction techniques (ART) |
en |
dc.subject.other |
Generalized matrix inverse (GMI) |
en |
dc.subject.other |
Medical imaging |
en |
dc.title |
Reconstruction of intracranial evoked current distribution images using generalized matrix inverses and algebraic reconstruction techniques |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IEMBS.1996.651994 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IEMBS.1996.651994 |
en |
heal.publicationDate |
1996 |
en |
heal.abstract |
Inversion of Event-Related Potentials (ERPs) is studied using simulated potentials, through an analytic technique providing information about extended intracranial distributions, with separate source and sink positions. Comparative performance evaluation of the Generalized Matrix Inverse (GMI) technique and Algebraic Reconstruction Technique (ART) shows that for matrix dimensions used in inverse electroencephalography direct matrix inversion is faster than ART, in the noiseless case. Both methods present the same limitations concerning radial resolution due to their property of providing minimum norm solutions. When noise is present ART algorithms specifically designed for noisy data converge better to the original simulated current source distributions than GMI solutions, even if truncated approximations of pseudoinverses are used. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
en |
dc.identifier.doi |
10.1109/IEMBS.1996.651994 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
825 |
en |
dc.identifier.epage |
826 |
en |