HEAL DSpace

Single layer linear feedforward neural network for signal estimation in the wavelet domain

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stephanakis Ioannis, M en
dc.contributor.author Kollias, Stefanos en
dc.date.accessioned 2014-03-01T02:41:18Z
dc.date.available 2014-03-01T02:41:18Z
dc.date.issued 1997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30449
dc.subject Approximation Method en
dc.subject Exponential Decay en
dc.subject Learning Algorithm en
dc.subject Rate of Convergence en
dc.subject Feedforward Neural Network en
dc.subject Low Frequency en
dc.subject Wavelet Transform en
dc.subject.other Approximation theory en
dc.subject.other Feedforward neural networks en
dc.subject.other Learning algorithms en
dc.subject.other Mathematical models en
dc.subject.other Wavelet transforms en
dc.subject.other Adaptive signal estimation model en
dc.subject.other Digital signal processing en
dc.title Single layer linear feedforward neural network for signal estimation in the wavelet domain en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDSP.1997.628382 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDSP.1997.628382 en
heal.publicationDate 1997 en
heal.abstract A model of adaptive signal estimation in the presence of noise is proposed in this paper using the wavelet transform and single layer linear feedforward neural networks. The networks successively estimate the residual of the approximations (details) of the input at different scales from coarse scales (low frequencies) to fine scales by minimizing the error of each channel of the wavelet transform separately. Since learning takes place in subspaces of the signal space one needs to train networks with fewer weights. The rate of convergence of the learning algorithm in several transform channels is investigated. It is shown that learning in the input space may diverge, whereas convergence is achieved in wavelet spaces. Experimental results are presented which compare the proposed approximation method with adaptive approximation using sigmoidal functions and exponentially decaying kernels. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName International Conference on Digital Signal Processing, DSP en
dc.identifier.doi 10.1109/ICDSP.1997.628382 en
dc.identifier.volume 2 en
dc.identifier.spage 487 en
dc.identifier.epage 490 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής