dc.contributor.author |
Kyriacou, E |
en |
dc.contributor.author |
Pavlopoulos, S |
en |
dc.contributor.author |
Konnis, G |
en |
dc.contributor.author |
Koutsouris, D |
en |
dc.contributor.author |
Zoumpoulis, P |
en |
dc.contributor.author |
Theotokas, I |
en |
dc.date.accessioned |
2014-03-01T02:41:19Z |
|
dc.date.available |
2014-03-01T02:41:19Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30458 |
|
dc.subject |
Fractal Dimension |
en |
dc.subject |
Image Texture Analysis |
en |
dc.subject |
K Nearest Neighbor |
en |
dc.subject |
Liver Disease |
en |
dc.subject |
Texture Analysis |
en |
dc.subject |
Texture Features |
en |
dc.subject |
Tissue Characterization |
en |
dc.subject |
Ultrasound |
en |
dc.subject |
First Order |
en |
dc.subject |
Region of Interest |
en |
dc.subject.other |
Computer aided diagnosis |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Statistical mechanics |
en |
dc.subject.other |
Tissue |
en |
dc.subject.other |
Ultrasonic imaging |
en |
dc.subject.other |
Diffused liver disease |
en |
dc.subject.other |
Image texture analysis |
en |
dc.subject.other |
Ultrasound B scan images |
en |
dc.subject.other |
Medical imaging |
en |
dc.title |
Computer assisted characterization of diffused liver disease using image texture analysis techniques on B-scan images |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/NSSMIC.1997.670599 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/NSSMIC.1997.670599 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this study we evaluate the accuracy of image texture analysis techniques in the characterization of ultrasonic liver images. The texture analysis techniques used are the Fractal Dimension Texture Analysis (FDTA), the Spatial Gray Level Dependence Matrices (SGLDM), the Gray Level Difference Statistics (GLDS), the Gray Level Run Length Statistics (RUNL), and First Order gray level Parameters (FOP). The algorithms were applied on three sets of u/s liver images, fatty, cirrhosis, normal, (30 samples each) all histologically proven. Textural features were extracted using regions of interest (ROI) of 32×32 pixels in size. Results were classified using the K-Nearest Neighbor (K-NN) classifier. The FDTA and SGLDM were able to characterize the three sets with accuracy of 80%, GLDS achieved 78.9% while RUNL and FOP both achieved 77.8% accuracy. Combination of GLDS and RUNL gave 81.1%, while combination of FDTA and SGLDM gave 82.2% accuracy. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE Nuclear Science Symposium & Medical Imaging Conference |
en |
dc.identifier.doi |
10.1109/NSSMIC.1997.670599 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1479 |
en |
dc.identifier.epage |
1483 |
en |