HEAL DSpace

Computer assisted characterization of diffused liver disease using image texture analysis techniques on B-scan images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kyriacou, E en
dc.contributor.author Pavlopoulos, S en
dc.contributor.author Konnis, G en
dc.contributor.author Koutsouris, D en
dc.contributor.author Zoumpoulis, P en
dc.contributor.author Theotokas, I en
dc.date.accessioned 2014-03-01T02:41:19Z
dc.date.available 2014-03-01T02:41:19Z
dc.date.issued 1997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30458
dc.subject Fractal Dimension en
dc.subject Image Texture Analysis en
dc.subject K Nearest Neighbor en
dc.subject Liver Disease en
dc.subject Texture Analysis en
dc.subject Texture Features en
dc.subject Tissue Characterization en
dc.subject Ultrasound en
dc.subject First Order en
dc.subject Region of Interest en
dc.subject.other Computer aided diagnosis en
dc.subject.other Image analysis en
dc.subject.other Statistical mechanics en
dc.subject.other Tissue en
dc.subject.other Ultrasonic imaging en
dc.subject.other Diffused liver disease en
dc.subject.other Image texture analysis en
dc.subject.other Ultrasound B scan images en
dc.subject.other Medical imaging en
dc.title Computer assisted characterization of diffused liver disease using image texture analysis techniques on B-scan images en
heal.type conferenceItem en
heal.identifier.primary 10.1109/NSSMIC.1997.670599 en
heal.identifier.secondary http://dx.doi.org/10.1109/NSSMIC.1997.670599 en
heal.publicationDate 1997 en
heal.abstract In this study we evaluate the accuracy of image texture analysis techniques in the characterization of ultrasonic liver images. The texture analysis techniques used are the Fractal Dimension Texture Analysis (FDTA), the Spatial Gray Level Dependence Matrices (SGLDM), the Gray Level Difference Statistics (GLDS), the Gray Level Run Length Statistics (RUNL), and First Order gray level Parameters (FOP). The algorithms were applied on three sets of u/s liver images, fatty, cirrhosis, normal, (30 samples each) all histologically proven. Textural features were extracted using regions of interest (ROI) of 32×32 pixels in size. Results were classified using the K-Nearest Neighbor (K-NN) classifier. The FDTA and SGLDM were able to characterize the three sets with accuracy of 80%, GLDS achieved 78.9% while RUNL and FOP both achieved 77.8% accuracy. Combination of GLDS and RUNL gave 81.1%, while combination of FDTA and SGLDM gave 82.2% accuracy. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName IEEE Nuclear Science Symposium & Medical Imaging Conference en
dc.identifier.doi 10.1109/NSSMIC.1997.670599 en
dc.identifier.volume 2 en
dc.identifier.spage 1479 en
dc.identifier.epage 1483 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής