dc.contributor.author |
Blekas, K |
en |
dc.contributor.author |
Papageorgiou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:41:19Z |
|
dc.date.available |
2014-03-01T02:41:19Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30459 |
|
dc.subject |
Continuous Optimization |
en |
dc.subject |
Fuzzy Classification |
en |
dc.subject |
Genetics |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Fuzzy classification scheme |
en |
dc.subject.other |
Hopfield neural networks |
en |
dc.subject.other |
Pattern recognition |
en |
dc.title |
Continuous optimization schemes for fuzzy classification |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICDSP.1997.628057 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICDSP.1997.628057 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
Two approaches are developed, which are suitable for the optimization of a fuzzy classification scheme through the formation of appropriate space-filling clusters. The first approach is based on the analog Hopfield neural network, while the second one uses real-encoded genetic optimization. Experimental results concerning difficult classification problems show that both proposed approaches are very successful in generating fuzzy partitions and outperform other known algorithm in terms of the correct placement of patterns into partitions. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
International Conference on Digital Signal Processing, DSP |
en |
dc.identifier.doi |
10.1109/ICDSP.1997.628057 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
265 |
en |
dc.identifier.epage |
268 |
en |