Fractional sampling rate conversion in the 3rd order cumulant domain and applications

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Delopoulos, Anastasios en
dc.contributor.author Rangoussi, Maria en
dc.contributor.author Kalogeras, Demetrios en
dc.date.accessioned 2014-03-01T02:41:28Z
dc.date.available 2014-03-01T02:41:28Z
dc.date.issued 1997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30472
dc.subject cumulant en
dc.subject Random Process en
dc.subject Shift Invariant en
dc.subject.other Random processes en
dc.subject.other Spurious signal noise en
dc.subject.other Statistical methods en
dc.subject.other Fractional sampling rate conversion en
dc.subject.other Signal filtering and prediction en
dc.title Fractional sampling rate conversion in the 3rd order cumulant domain and applications en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDSP.1997.628001 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDSP.1997.628001 en
heal.publicationDate 1997 en
heal.abstract In a variety of problems a random process is observed at different resolutions while knowledge of the corresponding scale conversion ratio usually contains useful information related to problem-specific quantities. A method is proposed which exploits cumulant domain relations of such signals in order to yield fractional estimates of the unknown conversion ratio. The noise insensitivity and shift invariance property of the cumulants offers advantages to the proposed method over signal domain alternatives. These advantages are discussed in two classes of practical problems involving 1-D and 2-D scale converted signals. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName International Conference on Digital Signal Processing, DSP en
dc.identifier.doi 10.1109/ICDSP.1997.628001 en
dc.identifier.volume 1 en
dc.identifier.spage 157 en
dc.identifier.epage 160 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record