HEAL DSpace

Fuzzy image classification using multiresolution neural networks with applications to remote sensing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Avrithis Yannis, S en
dc.contributor.author Kollias Stefanos, D en
dc.date.accessioned 2014-03-01T02:41:28Z
dc.date.available 2014-03-01T02:41:28Z
dc.date.issued 1997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30473
dc.subject Computational Complexity en
dc.subject Hierarchical Neural Networks en
dc.subject Image Analysis en
dc.subject Image Classification en
dc.subject Image Representation en
dc.subject Land Cover Mapping en
dc.subject Remote Sensing en
dc.subject Remote Sensing Data en
dc.subject Supervised Classification en
dc.subject Neural Network en
dc.subject.other Computational complexity en
dc.subject.other Fuzzy sets en
dc.subject.other Hierarchical systems en
dc.subject.other Image analysis en
dc.subject.other Neural networks en
dc.subject.other Remote sensing en
dc.subject.other Fuzzy image classification en
dc.subject.other Object recognition en
dc.title Fuzzy image classification using multiresolution neural networks with applications to remote sensing en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDSP.1997.628055 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDSP.1997.628055 en
heal.publicationDate 1997 en
heal.abstract Recent progress in supervised image classification research, has demonstrated the potential usefulness of incorporating fuzziness in the training, allocation and testing stages of several classification techniques. In this paper a multiresolution neural network approach to supervised classification is presented, exploiting the inherent fuzziness of such techniques in order to perform classification at different resolution levels and gain in computational complexity. In particular, multiresolution image analysis is carried out and hierarchical neural networks are used as an efficient architecture for classification of the derived multiresolution image representations. A new scheme is then introduced for transferring classification results to higher resolutions based on the fuzziness of the results of lower resolutions, resulting in faster implementation. Experimental results on land cover mapping applications from remotely sensed data illustrate significant improvements in classification speed without deterioration of representation accuracy. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName International Conference on Digital Signal Processing, DSP en
dc.identifier.doi 10.1109/ICDSP.1997.628055 en
dc.identifier.volume 1 en
dc.identifier.spage 261 en
dc.identifier.epage 264 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής