HEAL DSpace

Mapping nested loops onto distributed memory multiprocessors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koziris, Nectarios en
dc.contributor.author Papakonstantinou, George en
dc.contributor.author Tsanakas, Panayotis en
dc.date.accessioned 2014-03-01T02:41:29Z
dc.date.available 2014-03-01T02:41:29Z
dc.date.issued 1997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30479
dc.subject Discrete Group en
dc.subject Distributed Architecture en
dc.subject Distributed Memory en
dc.subject Indexation en
dc.subject Indexing Terms en
dc.subject Low Complexity en
dc.subject Nested Loops en
dc.subject Space Mapping en
dc.subject.other Computational complexity en
dc.subject.other Computer architecture en
dc.subject.other Data storage equipment en
dc.subject.other Iterative methods en
dc.subject.other Response time (computer systems) en
dc.subject.other Vectors en
dc.subject.other Chain grouping method en
dc.subject.other Distributed mesh connected architectures en
dc.subject.other Hyperplane method en
dc.subject.other Parallel processing systems en
dc.title Mapping nested loops onto distributed memory multiprocessors en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICPADS.1997.652527 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICPADS.1997.652527 en
heal.publicationDate 1997 en
heal.abstract This paper presents Chain grouping; a new low complexity method for the problem of partitioning the index space into groups with little intercommunication requirements, for mapping onto distributed mesh-connected architectures. First the loop iterations are scheduled in time, according to the hyperplane method, taking into consideration the minimum time displacement. Then, the index space is divided into discrete groups of related computations, which are assigned to different processors, while preserving the optimal makespan. The Chain grouping method is based on grouping along a uniform chain of computations, formed by a particular dependence vector. This vector will be proved as the best to reduce the total communication requirements. Inside every group, the optimal hyperplane scheduling is preserved, and the references to intragroup computations are considerably increased. The partitioned groups are afterwards assigned to meshes of processors. The resulting space mapping maximizes processor utilization and cuts down overall communication delays while preserving the optimal hyperplane time schedule. en
heal.publisher IEEE Comp Soc, Los Alamitos, CA, United States en
heal.journalName Proceedings of the Internatoinal Conference on Parallel and Distributed Systems - ICPADS en
dc.identifier.doi 10.1109/ICPADS.1997.652527 en
dc.identifier.spage 35 en
dc.identifier.epage 41 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής