dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Anthopoulos, Y |
en |
dc.date.accessioned |
2014-03-01T02:41:29Z |
|
dc.date.available |
2014-03-01T02:41:29Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30482 |
|
dc.subject |
Data Acquisition |
en |
dc.subject |
Dynamic Change |
en |
dc.subject |
Intelligent System |
en |
dc.subject |
Sensor Fusion |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Data acquisition |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Sensor signal fusion |
en |
dc.subject.other |
Sensor data fusion |
en |
dc.title |
Neural networks based sensorial signal fusion: An application to material identification |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICDSP.1997.628514 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICDSP.1997.628514 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
Data acquisition and learning capabilities are necessary for an intelligent system operating in unstructured, dynamically changing environments. For this purpose, a method for the effective use of multiple sensors must be developed. This paper presents how multisensor fusion can be accomplished by neural networks. It first summarizes the conventional fusion techniques and consequently describes the use of neural networks for sensor fusion as well as their advantages. Finally, an application is presented where a neural network is used to fuse the signals of several sensors, of different type, for material identification purposes. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
International Conference on Digital Signal Processing, DSP |
en |
dc.identifier.doi |
10.1109/ICDSP.1997.628514 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
923 |
en |
dc.identifier.epage |
926 |
en |