dc.contributor.author |
Manis, G |
en |
dc.contributor.author |
Papakonstantinou, G |
en |
dc.contributor.author |
Tsanakas, P |
en |
dc.date.accessioned |
2014-03-01T02:41:29Z |
|
dc.date.available |
2014-03-01T02:41:29Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30485 |
|
dc.subject |
Euclidean Distance |
en |
dc.subject |
piecewise linear |
en |
dc.subject |
piecewise linear approximation |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Piecewise linear techniques |
en |
dc.subject.other |
Digitized curves |
en |
dc.subject.other |
Euclidean distance |
en |
dc.subject.other |
Piecewise linear approximation (PLA) |
en |
dc.subject.other |
Digital signal processing |
en |
dc.title |
Optimal piecewise linear approximation of digitized curves |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICDSP.1997.628552 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICDSP.1997.628552 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this paper, a new piecewise linear method is presented for the approximation of digitized curves. This method produces a sequence of consecutive line segments and has the following characteristics (i) it approximates the digitized curve with the minimum number of line segments, (ii) the Euclidean distance between each point of the digitized curve and the line segment that approximates it, does not exceed a boundary value ε and (iii) the vertices of the produced line are not (necessarily) points of the input curve. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
International Conference on Digital Signal Processing, DSP |
en |
dc.identifier.doi |
10.1109/ICDSP.1997.628552 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1079 |
en |
dc.identifier.epage |
1081 |
en |