HEAL DSpace

Retrainable neural networks for image analysis and classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis Anastasios, D en
dc.contributor.author Doulamis Nikolaos, D en
dc.contributor.author Kollias Stefanos, D en
dc.date.accessioned 2014-03-01T02:41:30Z
dc.date.available 2014-03-01T02:41:30Z
dc.date.issued 1997 en
dc.identifier.issn 08843627 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30493
dc.subject Image Analysis en
dc.subject Image Recognition en
dc.subject Map Estimation en
dc.subject Neural Network Classifier en
dc.subject Neural Network en
dc.subject.other Estimation en
dc.subject.other Feature extraction en
dc.subject.other Image analysis en
dc.subject.other Image coding en
dc.subject.other Image segmentation en
dc.subject.other Maximum a posteriori (MAP) estimation technique en
dc.subject.other Neural networks en
dc.title Retrainable neural networks for image analysis and classification en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICSMC.1997.633215 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICSMC.1997.633215 en
heal.publicationDate 1997 en
heal.abstract A novel approach is presented in this paper for improving the performance of neural network classifiers in image recognition, segmentation or coding applications, based on a retraining procedure at the user level. The procedure includes a maximum a posteriori (MAP) estimation technique for optimally selecting a retraining data set from the image applied to the network during real life operation, a decision mechanism for automatic activation of network retraining and a neural network module which performs the classification task. The extracted feature set, used for retraining the network, can include additional elements compared to those used in the network initial training phase, so that it better fits the specific application data under consideration. Results are presented which illustrate the theoretical developments as well as the performance of the proposed approach in real life experiments. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName Proceedings of the IEEE International Conference on Systems, Man and Cybernetics en
dc.identifier.doi 10.1109/ICSMC.1997.633215 en
dc.identifier.volume 4 en
dc.identifier.spage 3558 en
dc.identifier.epage 3563 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής