dc.contributor.author |
Tzafestas Spyros, G |
en |
dc.contributor.author |
Prokopiou Platon, A |
en |
dc.contributor.author |
Tzafestas Costas, S |
en |
dc.date.accessioned |
2014-03-01T02:41:30Z |
|
dc.date.available |
2014-03-01T02:41:30Z |
|
dc.date.issued |
1997 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30494 |
|
dc.subject |
Control Problem |
en |
dc.subject |
Dynamic Model |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
Multilayer Perceptron |
en |
dc.subject |
Sliding Mode Control |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Heuristic methods |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Online systems |
en |
dc.subject.other |
Remote control |
en |
dc.subject.other |
Robot learning |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.subject.other |
Dynamic models |
en |
dc.subject.other |
Teleoperator control scheme |
en |
dc.subject.other |
Manipulators |
en |
dc.title |
Robust telemanipulator control using a partitioned neural network architecture |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICNN.1997.614161 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICNN.1997.614161 |
en |
heal.publicationDate |
1997 |
en |
heal.abstract |
In this paper the control problem of telemanipulators is considered under the condition that they are subject to modeling and other uncertainties of considerable levels. The design is based on the S. Lee and H. S. Lee teleoperator control scheme, which is modified so as to be able to compensate the uncertainties, and is implemented using a partitioned multilayer perception neural network. Several subnetworks are used each one identifying a term of the manipulator's dynamic model. A new learning algorithm is proposed which distributes the learning error to each subnetwork and enables online training. Several simulation results are provided, which show the robustness ability by the partitioned neurocontroller, and compare it with the results obtained through sliding mode control. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE International Conference on Neural Networks - Conference Proceedings |
en |
dc.identifier.doi |
10.1109/ICNN.1997.614161 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.spage |
1755 |
en |
dc.identifier.epage |
1760 |
en |