dc.contributor.author |
Doulamis Anastasios, D |
en |
dc.contributor.author |
Doulamis Nikolaos, D |
en |
dc.contributor.author |
Kollias Stefanos, D |
en |
dc.date.accessioned |
2014-03-01T02:41:30Z |
|
dc.date.available |
2014-03-01T02:41:30Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30504 |
|
dc.subject |
Map Estimation |
en |
dc.subject |
Procedural Modeling |
en |
dc.subject |
Training Algorithm |
en |
dc.subject |
Video Conferencing |
en |
dc.subject |
Video Object Segmentation |
en |
dc.subject |
Markov Random Field |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Video conferencing |
en |
dc.subject.other |
Video telephone equipment |
en |
dc.subject.other |
Markov random field |
en |
dc.subject.other |
Maximum a posteriori estimation |
en |
dc.subject.other |
Video object segmentation |
en |
dc.subject.other |
Image segmentation |
en |
dc.title |
Neural network based scheme for unsupervised video object segmentation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.1998.723557 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.1998.723557 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper, we proposed a neural network based scheme for performing unsupervised video object segmentation, especially for videophone or video-conferencing applications. The procedure includes (a) a training algorithm for adapting the network weights to the current condition, (b) a Maximum A Posteriori (MAP) estimation procedure for optimally selecting the most representative data of the current environment as retraining data and (c) a decision mechanism for determining when network retraining should be activated. The training algorithm takes into consideration both the former and the current network knowledge in order to achieve good generalization. The MAP estimation procedure models the network output as a Markov Random Field (MRF) and optimally selects the set of training inputs and corresponding desired outputs, using initial estimates of human face and body. Finally, a verification mechanism is introduced which augments the training data, exploiting information of the previous and current environment. |
en |
heal.publisher |
IEEE Comp Soc, Los Alamitos, CA, United States |
en |
heal.journalName |
IEEE International Conference on Image Processing |
en |
dc.identifier.doi |
10.1109/ICIP.1998.723557 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
632 |
en |
dc.identifier.epage |
636 |
en |