HEAL DSpace

Prediction of distribution transformer no-load losses using the learning vector quantization neural network

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Hatziargyriou Nikos, D en
dc.contributor.author Georgilakis Paul, S en
dc.contributor.author Paparigas Dimitrios, G en
dc.contributor.author Bakopoulos John, A en
dc.date.accessioned 2014-03-01T02:41:33Z
dc.date.available 2014-03-01T02:41:33Z
dc.date.issued 1998 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30529
dc.subject Artificial Neural Network en
dc.subject Learning Vector Quantization en
dc.subject Quality Control en
dc.subject Success Rate en
dc.subject Neural Network en
dc.subject Product Line en
dc.subject.other Electric losses en
dc.subject.other Electric transformer loads en
dc.subject.other Learning algorithms en
dc.subject.other Magnetic cores en
dc.subject.other Vector quantization en
dc.subject.other Distribution transformer no load losses en
dc.subject.other Learning vector quantization en
dc.subject.other Neural networks en
dc.title Prediction of distribution transformer no-load losses using the learning vector quantization neural network en
heal.type conferenceItem en
heal.identifier.primary 10.1109/MELCON.1998.699420 en
heal.identifier.secondary http://dx.doi.org/10.1109/MELCON.1998.699420 en
heal.publicationDate 1998 en
heal.abstract This paper presents an artificial neural network (ANN) approach to classification of distribution transformer no-load losses. The Learning Vector Quantization (LVQ) neural network architecture is applied for that purpose. The ANN is trained to learn the relationship among data obtained from previous completed transformer constructions. For the creation of the training and testing set actual industrial measurements are used. Data comprise grain oriented steel electrical characteristics, cores constructional parameters, quality control measurements of cores production line and transformers assembly line measurements. It is shown that ANNs are very suitable for this application since they present classification success rates between 78% and 96% for all the situations examined. en
heal.publisher IEEE, Piscataway, NJ, United States en
heal.journalName Proceedings of the Mediterranean Electrotechnical Conference - MELECON en
dc.identifier.doi 10.1109/MELCON.1998.699420 en
dc.identifier.volume 2 en
dc.identifier.spage 1180 en
dc.identifier.epage 1184 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής