dc.contributor.author |
Hatziargyriou Nikos, D |
en |
dc.contributor.author |
Georgilakis Paul, S |
en |
dc.contributor.author |
Paparigas Dimitrios, G |
en |
dc.contributor.author |
Bakopoulos John, A |
en |
dc.date.accessioned |
2014-03-01T02:41:33Z |
|
dc.date.available |
2014-03-01T02:41:33Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30529 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Learning Vector Quantization |
en |
dc.subject |
Quality Control |
en |
dc.subject |
Success Rate |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Product Line |
en |
dc.subject.other |
Electric losses |
en |
dc.subject.other |
Electric transformer loads |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Magnetic cores |
en |
dc.subject.other |
Vector quantization |
en |
dc.subject.other |
Distribution transformer no load losses |
en |
dc.subject.other |
Learning vector quantization |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Prediction of distribution transformer no-load losses using the learning vector quantization neural network |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/MELCON.1998.699420 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/MELCON.1998.699420 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
This paper presents an artificial neural network (ANN) approach to classification of distribution transformer no-load losses. The Learning Vector Quantization (LVQ) neural network architecture is applied for that purpose. The ANN is trained to learn the relationship among data obtained from previous completed transformer constructions. For the creation of the training and testing set actual industrial measurements are used. Data comprise grain oriented steel electrical characteristics, cores constructional parameters, quality control measurements of cores production line and transformers assembly line measurements. It is shown that ANNs are very suitable for this application since they present classification success rates between 78% and 96% for all the situations examined. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
Proceedings of the Mediterranean Electrotechnical Conference - MELECON |
en |
dc.identifier.doi |
10.1109/MELCON.1998.699420 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1180 |
en |
dc.identifier.epage |
1184 |
en |