dc.contributor.author |
Vogiatzis, Dimitrios |
en |
dc.contributor.author |
Stafylopatis, Andreas |
en |
dc.date.accessioned |
2014-03-01T02:41:34Z |
|
dc.date.available |
2014-03-01T02:41:34Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30538 |
|
dc.subject |
Reinforcement Learning |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Reward Dependence |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Reinforcement learning |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Neural network endowed with symbolic processing ability |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IJCNN.1999.830809 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IJCNN.1999.830809 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We propose a neural network method for the generation of symbolic expressions using reinforcement learning. According to the proposed method, a human decides on the kind and number of primitive functions which, with the appropriate composition (in the mathematical sense), can represent a mapping between two domains. The appropriate composition is achieved by an agent which tries many compositions and receives a reward depending on the quality of the composed function. |
en |
heal.publisher |
IEEE, United States |
en |
heal.journalName |
Proceedings of the International Joint Conference on Neural Networks |
en |
dc.identifier.doi |
10.1109/IJCNN.1999.830809 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.spage |
4054 |
en |
dc.identifier.epage |
4058 |
en |