dc.contributor.author |
Stephanakis Ioannis, M |
en |
dc.contributor.author |
Stamou, George |
en |
dc.contributor.author |
Kollias, Stefanos |
en |
dc.date.accessioned |
2014-03-01T02:41:37Z |
|
dc.date.available |
2014-03-01T02:41:37Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30565 |
|
dc.subject |
Fuzzy C Means Algorithm |
en |
dc.subject |
Image Filtering |
en |
dc.subject |
Image Restoration |
en |
dc.subject |
Linear Optimization |
en |
dc.subject |
Signal To Noise Ratio |
en |
dc.subject |
Unsupervised Clustering |
en |
dc.subject |
Wiener Filter |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Image enhancement |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Signal filtering and prediction |
en |
dc.subject.other |
Signal to noise ratio |
en |
dc.subject.other |
Local wavelet features |
en |
dc.subject.other |
Piecewise Wiener filter |
en |
dc.subject.other |
Image reconstruction |
en |
dc.title |
Piecewise Wiener filter model based on fuzzy partition of local wavelet features for image restoration |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IJCNN.1999.833503 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IJCNN.1999.833503 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Autoregressive Wiener filters are used for prediction and restoration of still frame and video images. Nevertheless filters of this kind solve a linear optimization problem for the global statistics of an image. They fail when image statistics vary in space (non-stationarity) and when the corrupting noise is non-linear. A piecewise Wiener filter defined upon a fuzzy partition of the space of local wavelet features is presented and successfully applied to image restoration in the aforementioned cases. Unsupervised clustering of the features using the Bezdek fuzzy c-means algorithm is performed for region estimation and subsequent application of the proper filter hR(k) (n,m) according to a degree of belief μR(k). Experimental results indicate higher improvements in Signal-to-Noise-Ratios of corrupted images using the proposed method. |
en |
heal.publisher |
IEEE, United States |
en |
heal.journalName |
Proceedings of the International Joint Conference on Neural Networks |
en |
dc.identifier.doi |
10.1109/IJCNN.1999.833503 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
2690 |
en |
dc.identifier.epage |
2693 |
en |